Using the Predicted Structure of the Amot Coiled Coil Homology Domain to Understand Lipid Binding

Main Article Content

Cameron James Peck
Piia Virtanen
Derrick Johnson
Ann Kimble-Hill

Abstract

Angiomotins (Amots) are a family of adapter proteins that modulate cellular polarity, differentiation, proliferation, and migration. Amot family members also have a characteristic lipid-binding domain, the coiled coil homology (ACCH) domain that selectively targets the protein to membranes, which has been directly linked to its regulatory role in the cell. Several spot blot assays were used to validate the regions of the domain that participate in its membrane association, deformation, and vesicle fusion activity, which suggested the need for a structure to define the mechanism. Therefore, we endeavored to understand the structure-function relationship of this domain with the desire to find ways to modulate these signaling pathways. After many failed attempts to crystallize the ACCH domain of each of the Amot family members for structural analysis, we decided to pursue homologous models that could be refined using small angle x-ray scattering data. Theoretical models were produced using the homology software SWISS-MODEL and threading software I-TASSER and LOMETS, followed by comparison to SAXS data for model selection and refinement. As a result, we present a theoretical model of the domain that is driven by alpha helices and short random coil regions. These alpha helical regions form a classic dimer interface followed by two wide spread legs that we predict to be the lipid binding interface.

Downloads

Download data is not yet available.

Article Details

How to Cite
Peck, C. J., Virtanen, P., Johnson, D., & Kimble-Hill, A. (2018). Using the Predicted Structure of the Amot Coiled Coil Homology Domain to Understand Lipid Binding. IU Journal of Undergraduate Research, 4(1), 27–46. https://doi.org/10.14434/iujur.v4i1.24528
Section
Natural Sciences

References

Aase, K., Ernkvist, M., Ebarasi, L., Jakobsson, L., Majumdar, A., Yi, C., . . . Holmgren, L. (2007). Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes & Development, 21(16), 2055-2068. doi:10.1101/gad.432007

Albrecht, L. V., Green, K. J., & Dubash, A. D. (2016). Cadherins in Cancer. In S. T. Suzuki & S. Hirano (Eds.), The Cadherin Superfamily: Key Regulators of Animal Development and Physiology (pp. 363-397). Tokyo: Springer Japan.

Ali, M. F., Chachadi, V. B., Petrosyan, A., & Cheng, P.-W. (2012). Golgi Phosphoprotein 3 Determines Cell Binding Properties under Dynamic Flow by Controlling Golgi Localization of Core 2 N-Acetylglucosaminyltransferase 1. Journal of Biological Chemistry, 287(47), 39564-39577. doi:10.1074/jbc.M112.346528

Arnau, J., Lauritzen, C., Petersen, G. E., & Pedersen, J. (2006). Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression and Purification, 48(1), 1-13. doi:http://dx.doi.org/10.1016/j.pep.2005.12.002

Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201. doi:10.1093/bioinformatics/bti770

Ashpole, N. M., & Hudmon, A. (2011). Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Molecular and Cellular Neuroscience, 46(4), 720-730. doi:http://dx.doi.org/10.1016/j.mcn.2011.02.003

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., . . . Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research, 42(W1), W252-W258. doi:10.1093/nar/gku340

Bobba, S., Ponnaluri, V. K. C., Mukherji, M., & Gutheil, W. G. (2011). Microtiter Plate-Based Assay for Inhibitors of Penicillin-Binding Protein 2a from Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(6), 2783-2787. doi:10.1128/aac.01327-10

Buchan DWA, M. F., Nugent TCO, Bryson K, Jones DT. (2013). Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Research, 41(W1), W340-W348.

Burkhard, P., Stetefeld, J., & Strelkov, S. V. (2001). Coiled coils: a highly versatile protein folding motif. Trends in Cell Biology, 11(2), 82-88. doi:http://dx.doi.org/10.1016/S0962-8924(00)01898-5

Cha, R., & Tilly, W. (1995). PCR primer: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Chan, S. W., Lim, C. J., Chong, Y. F., Pobbati, A. V., Huang, C., & Hong, W. (2011). Hippo Pathway-independent Restriction of TAZ and YAP by Angiomotin. The Journal of Biological Chemistry, 286(9), 7018-7026. doi:10.1074/jbc.C110.212621

Cohen, C. a. H., K. (1963). J. Mol. Bio, 6, J. Mol. Bio.

Colwill, K., Wells, C. D., Elder, K., Goudreault, M., Hersi, K., Kulkarni, S., . . . Morin, G. B. (2006). Modification of the Creator recombination system for proteomics applications–improved expression by addition of splice sites. BMC biotechnology, 6(1), 13. doi:10.1186/1472-6750-6-13

Cowtan, P. E. a. B. L. a. W. G. S. a. K. (2010). Features and Development of Coot. Acta Crystallographica Section D - Biological Crystallography, 66, 486-501.

Dawson, J. C., Legg, J. A., & Machesky, L. M. (2006). Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends in Cell Biology, 16(10), 493-498.

Derewenda, U., Tarricone, C., Choi, W. C., Cooper, D. R., Lukasik, S., Perrina, F., . . . Derewenda, Z. S. (2007). The Structure of the Coiled-Coil Domain of Ndel1 and the Basis of Its Interaction with Lis1, the Causal Protein of Miller-Dieker Lissencephaly. Structure, 15(11), 1467-1481. doi:http://dx.doi.org/10.1016/j.str.2007.09.015

Ellmark, P., Ingvarsson, J., Carlsson, A., Lundin, B. S., Wingren, C., & Borrebaeck, C. A. K. (2006). Identification of Protein Expression Signatures Associated with Helicobacter pylori Infection and Gastric Adenocarcinoma Using Recombinant Antibody Microarrays. Molecular & Cellular Proteomics, 5(9), 1638-1646. doi:10.1074/mcp.M600170-MCP200

Ernkvist, M., Aase, K., Ukomadu, C., Wohlschlegel, J., Blackman, R., Veitonmäki, N., . . . Holmgren, L. (2006). p130-Angiomotin associates to actin and controls endothelial cell shape. FEBS Journal, 273(9), 2000-2011. doi:10.1111/j.1742-4658.2006.05216.x

Ernkvist, M., Birot, O., Sinha, I., Veitonmaki, N., Nyström, S., Aase, K., & Holmgren, L. (2008). Differential roles of p80- and p130-angiomotin in the switch between migration and stabilization of endothelial cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1783(3), 429-437. doi:10.1016/j.bbamcr.2007.11.018

Flaman, J.-M., Frebourg, T., Moreau, V., Charbonnier, F., Martin, C., Ishioka, C., . . . Iggo, R. (1994). A rapid PCR fidelity assay. Nucleic acids research, 22(15), 3259.

Flory, P. J., & Volkenstein, M. (1969). Statistical mechanics of chain molecules. Biopolymers, 8(5), 699-700. doi:10.1002/bip.1969.360080514

Franke, D., & Svergun, D. I. (2009). DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. Journal of Applied Crystallography, 42(2), 342-346. doi:doi:10.1107/S0021889809000338

Franke, T. F., Kaplan, D. R., Cantley, L. C., & Toker, A. (1997). Direct Regulation of the Akt Proto-Oncogene Product by Phosphatidylinositol-3,4-bisphosphate. Science, 275(5300), 665-668. doi:10.1126/science.275.5300.665

Gallop, J. L., Jao, C. C., Kent, H. M., Butler, P. J. G., Evans, P. R., Langen, R., & McMahon, H. T. (2006). Mechanism of endophilin N-BAR domain-mediated membrane curvature. The EMBO Journal, 25(12), 2898-2910. doi:10.1038/sj.emboj.7601174

Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., & Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic acids research, 38(suppl 2), W695-W699. doi:10.1093/nar/gkq313

Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(S1), S162-S173. doi:10.1002/elps.200900140

Hakami, F., Darda, L., Stafford, P., Woll, P., Lambert, D. W., & Hunter, K. D. (2014). The roles of HOXD10 in the development and progression of head and neck squamous cell carcinoma (HNSCC). Br J Cancer, 111(4), 807-816. doi:10.1038/bjc.2014.372

Heller, B., Adu-Gyamfi, E., Smith-Kinnaman, W., Babbey, C., Vora, M., Xue, Y., . . . Wells, C. D. (2010). Amot Recognizes a Juxtanuclear Endocytic Recycling Compartment via a Novel Lipid Binding Domain. Journal of Biological Chemistry,285(16), 12308-12320. doi:10.1074/jbc.M109.096230

Hinderliter, A., & May, S. (2006). Cooperative adsorption of proteins onto lipid membranes. Journal of Physics: Condensed Matter, 18(28), S1257.

Hirate, Y., Hirahara, S., Inoue, K.-i., Suzuki, A., Alarcon, Vernadeth B., Akimoto, K., . . . Sasaki, H. (2013). Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos. Current Biology,23(13), 1181-1194. doi:http://dx.doi.org/10.1016/j.cub.2013.05.014

Hirate, Y., & Sasaki, H. (2014). The role of angiomotin phosphorylation in the Hippo pathway during preimplantation mouse development. Tissue Barriers, 2(1), e28127. doi:10.4161/tisb.28127

Hsu, Y. L., Hung, J. Y., Chou, S. H., Huang, M. S., Tsai, M. J., Lin, Y. S., . . . Kuo, P. L. (2015). Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression. Oncogene, 34(31), 4056-4068. doi:10.1038/onc.2014.333

Jaroszewski, L., Rychlewski, L., Li, Z., Li, W., & Godzik, A. (2005). FFAS03: a server for profile–profile sequence alignments. Nucleic acids research, 33(suppl 2), W284-W288. doi:10.1093/nar/gki418

Jiang, W., Watkins, G., Douglas-Jones, A., Holmgren, L., & Mansel, R. (2006). Angiomotin and angiomotin like proteins, their expression and correlation with angiogenesis and clinical outcome in human breast cancer. BMC Cancer, 6(1), 16.

Johnson, M. A., Seifert, S., Petrache, H. I., & Kimble-Hill, A. C. (2014). Phase Coexistence in Single-Lipid Membranes Induced by Buffering Agents. Langmuir, 30(33), 9880-9885. doi:10.1021/la5018938

Jurasek, R. S. H. a. J. S. a. L. B. S. a. L. (1972). Bioinformatics, 37, 299.

Kiefer, F., Arnold, K., Künzli, M., Bordoli, L., & Schwede, T. (2009). The SWISS-MODEL Repository and associated resources. Nucleic acids research, 37(suppl_1), D387-D392. doi:10.1093/nar/gkn750

Kimberley J. Sweeney, A. P., Gregor Eichele. (2001). NudE-L, a novel Lis1-interacting protein, belongs to a family of vertebrate coiled-coil proteins. Mechanisms of Development, 101(1-2).

Kozin, M. B., & Svergun, D. I. (2001). Automated matching of high- and low-resolution structural models. Journal of Applied Crystallography, 34(1), 33-41. doi:doi:10.1107/S0021889800014126

Leevers, S. J., Vanhaesebroeck, B., & Waterfield, M. D. (1999). Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Current Opinion in Cell Biology, 11(2), 219-225. doi:http://dx.doi.org/10.1016/S0955-0674(99)80029-5

Levchenko, T., Veitonmäki, N., Lundkvist, A., Gerhardt, H., Ming, Y., Berggren, K., . . . Holmgren, L. (2008). Therapeutic antibodies targeting angiomotin inhibit angiogenesis in vivo. The FASEB Journal, 22(3), 880-889. doi:10.1096/fj.07-9509com

LifeTein. Retrieved from http://lifetein.com/peptide-analysis-tool.html

Lobley, A., Sadowski, M. I., & Jones, D. T. (2009). pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics, 25(14), 1761-1767. doi:10.1093/bioinformatics/btp302

Lundberg, K. S., Shoemaker, D. D., Adams, M. W. W., Short, J. M., Sorge, J. A., & Mathur, E. J. (1991). High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene, 108(1), 1-6. doi:http://dx.doi.org/10.1016/0378-1119(91)90480-Y

Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting Coiled Coils from Protein Sequences. Science, 252, 1162-1164.

Lv, M., Li, S., Luo, C., Zhang, X., Shen, Y., Sui, Y., . . . Yang, J. (2016). Angiomotin promotes renal epithelial and carcinoma cell proliferation by retaining the nuclear YAP. Oncotarget, 7(11), 12393-12403. doi:10.18632/oncotarget.7161

Madera, M. (2008). Profile Comparer: a program for scoring and aligning profile hidden Markov models. Bioinformatics, 24(22), 2630-2631. doi:10.1093/bioinformatics/btn504

Mana-Capelli, S., Paramasivam, M., Dutta, S., & McCollum, D. (2014). Angiomotins link F-actin architecture to Hippo pathway signaling. Molecular Biology of the Cell, 25(10), 1676-1685. doi:10.1091/mbc.E13-11-0701

McLaughlin, S., Wang, J., Gambhir, A., & Murray, D. (2002). PIP2 and proteins: Interactions, organization, and information flow. Annual review of biophysics and biomolecular structure, 31(1), 151-175.

Narayanan, S., Arthanari, H., Wolfe, M. S., & Wagner, G. (2011). Molecular Characterization of Disrupted in Schizophrenia-1 Risk Variant S704C Reveals the Formation of Altered Oligomeric Assembly. Journal of Biological Chemistry, 286(51), 44266-44276. doi:10.1074/jbc.M111.271593

Ortiz, A., Lee, Y.-C., Yu, G., Liu, H.-C., Lin, S.-C., Bilen, M. A., . . . Lin, S.-H. (2015). Angiomotin is a novel component of cadherin-11/β-catenin/p120 complex and is critical for cadherin-11-mediated cell migration. The FASEB Journal, 29(3), 1080-1091. doi:10.1096/fj.14-261594

Peter, B. J., Kent, H. M., Mills, I. G., Vallis, Y., Butler, P. J. G., Evans, P. R., & McMahon, H. T. (2004). BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure. Science, 303(5657), 495-499. doi:10.1126/science.1092586

Petrosyan, A., Ali, M. F., Verma, S. K., Cheng, H., & Cheng, P.-W. (2012). Non-muscle myosin IIA transports a Golgi glycosyltransferase to the endoplasmic reticulum by binding to its cytoplasmic tail. The International Journal of Biochemistry & Cell Biology, 44(7), 1153-1165. doi:http://dx.doi.org/10.1016/j.biocel.2012.04.004

Ranahan, W. P., Han, Z., Smith-Kinnaman, W., Nabinger, S. C., Heller, B., Herbert, B.-S., . . . Wells, C. D. (2011). The Adaptor Protein AMOT Promotes the Proliferation of Mammary Epithelial Cells via the Prolonged Activation of the Extracellular Signal-Regulated Kinases. Cancer Research, 71(6), 2203-2211. doi:10.1158/0008-5472.can-10-1995

Rong, S.-B., Hu, Y., Enyedy, I., Powis, G., Meuillet, E. J., Wu, X., . . . Kozikowski, A. P. (2001). Molecular Modeling Studies of the Akt PH Domain and Its Interaction with Phosphoinositides. Journal of Medicinal Chemistry, 44(6), 898-908. doi:10.1021/jm000493i

Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protocols, 5(4), 725-738.

Ruan, W.-D., Wang, P., Feng, S., Xue, Y., & Zhang, B. (2016). MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. OncoTargets and therapy, 9, 303-313. doi:10.2147/OTT.S95204

Ruan, W., Wang, P., Feng, S., Xue, Y., & Li, Y. (2016). Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumor Biology, 37(3), 4065-4073. doi:10.1007/s13277-015-4256-7

Senes, A., Chadi, D. C., Law, P. B., Walters, R. F. S., Nanda, V., & DeGrado, W. F. (2007). Ez, a Depth-dependent Potential for Assessing the Energies of Insertion of Amino Acid Side-chains into Membranes: Derivation and Applications to Determining the Orientation of Transmembrane and Interfacial Helices. Journal of Molecular Biology, 366(2), 436-448. doi:http://dx.doi.org/10.1016/j.jmb.2006.09.020

Shimono, A., & Behringer, R. R. (2003). Angiomotin Regulates Visceral Endoderm Movements during Mouse Embryogenesis Current Biology, 13(7), 613-617

Shugar, D. (1952). The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim Biophys Acta, 8(0), 302-309. doi:http://dx.doi.org/10.1016/0006-3002(52)90045-0

Sievers F, W. A., Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(539).

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., . . . Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1). doi:10.1038/msb.2011.75

Singh, A., & Hitchcock-DeGregori, S. E. (2003). Local Destabilization of the Tropomyosin Coiled Coil Gives the Molecular Flexibility Required for Actin Binding. Biochemistry, 42(48), 14114-14121. doi:10.1021/bi0348462

Sitao Wu, Y. Z. (2007). LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Research, 35, 3375-3382.

Smillie, A. S. M. a. L. B. (1981). Biochemistry, 4, 2401.

Soares, D. C., Bradshaw, N. J., Zou, J., Kennaway, C. K., Hamilton, R. S., Chen, Z. A., . . . Porteous, D. J. (2012). The Mitosis and Neurodevelopment Proteins NDE1 and NDEL1 Form Dimers, Tetramers, and Polymers with a Folded Back Structure in Solution. Journal of Biological Chemistry, 287(39), 32381-32393. doi:10.1074/jbc.M112.393439

Söding, J. (2005). Protein homology detection by HMM–HMM comparison. Bioinformatics, 21(7), 951-960. doi:10.1093/bioinformatics/bti125

Stenmark, H., Aasland, R., Toh, B.-H., & D'Arrigo, A. (1996). Endosomal Localization of the Autoantigen EEA1 Is Mediated by a Zinc-binding FYVE Finger. Journal of Biological Chemistry, 271(39), 24048-24054. doi:10.1074/jbc.271.39.24048

Stenmark, H., & Gillooly, D. J. (2001). Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Seminars in Cell and Developmental Biology, 12(2), 193-199.

Sugihara-Mizuno, Y., Adachi, M., Kobayashi, Y., Hamazaki, Y., Nishimura, M., Imai, T., . . . Tsukita, S. (2007). Molecular characterization of angiomotin/JEAP family proteins: interaction with MUPP1/Patj and their endogenous properties. Genes to Cells, 12(4), 473-486. doi:10.1111/j.1365-2443.2007.01066.x

Svergun, D. (1992). Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 25(4), 495-503. doi:doi:10.1107/S0021889892001663

Svergun, D., Barberato, C., & Koch, M. H. J. (1995). CRYSOL– a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. Journal of Applied Crystallography, 28(6), 768-773. doi:10.1107/s0021889895007047

Svergun, D. I. (1999). Restoring Low Resolution Structure of Biological Macromolecules from Solution Scattering Using Simulated Annealing. Biophysical Journal, 76(6), 2879-2886. doi:http://dx.doi.org/10.1016/S0006-3495(99)77443-6

Svergun, D. I., Petoukhov, M. V., & Koch, M. H. J. (2001). Determination of Domain Structure of Proteins from X-Ray Solution Scattering. Biophysical Journal, 80(6), 2946-2953.

Tamura K, D. J., Nei M & Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197

Tarricone, C., Perrina, F., Monzani, S., Massimiliano, L., Kim, M.-H., Derewenda, Z. S., . . . Musacchio, A. (2004). Coupling PAF Signaling to Dynein Regulation: Structure of LIS1 in Complex with PAF-Acetylhydrolase. Neuron, 44(5), 809-821. doi:http://dx.doi.org/10.1016/j.neuron.2004.11.019

Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 60(5), 523-533. doi:10.1007/s00253-002-1158-6

Vanhaesebroeck, B., & Waterfield, M. D. (1999). Signaling by Distinct Classes of Phosphoinositide 3-Kinases. Experimental Cell Research, 253(1), 239-254. doi:http://dx.doi.org/10.1006/excr.1999.4701

Volkov, V. V., & Svergun, D. I. (2003). Uniqueness of ab initio shape determination in small-angle scattering. Journal of Applied Crystallography, 36(3 Part 1), 860-864. doi:doi:10.1107/S0021889803000268

Wang, W., Huang, J., & Chen, J. (2011). Angiomotin-like Proteins Associate with and Negatively Regulate YAP1. Journal of Biological Chemistry, 286(6), 4364-4370. doi:10.1074/jbc.C110.205401

Wang, Y., Justilien, V., Brennan, K. I., Jamieson, L., Murray, N. R., & Fields, A. P. (2017). PKC[iota] regulates nuclear YAP1 localization and ovarian cancer tumorigenesis. Oncogene, 36(4), 534-545. doi:10.1038/onc.2016.224

Wells, C. D., Fawcett, J. P., Traweger, A., Yamanaka, Y., Goudreault1, M., Elder, K., . . . Pawson, T. (2006). A Rich1/Amot Complex Regulates the Cdc42 GTPase and Apical-Polarity Proteins in Epithelial Cells. Cell, 125(3), 535-548

Wu, S., & Zhang, Y. (2007). LOMETS: A local meta-threading-server for protein structure prediction. Nucleic acids research, 35(10), 3375-3382. doi:10.1093/nar/gkm251

Xu, D., Jaroszewski, L., Li, Z., & Godzik, A. (2013). FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking. Bioinformatics. doi:10.1093/bioinformatics/btt578

Xu, J., & Zhang, Y. (2010). How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics, 26(7), 889-895. doi:10.1093/bioinformatics/btq066

Xu, Y., Seet, L. F., Hanson, B., & Hong, W. (2001). The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem. J., 350(3), 513-530.

Xu, Y., & Xu, D. (2000). Protein threading using PROSPECT: Design and evaluation. Proteins: Structure, Function, and Bioinformatics, 40(3), 343-354. doi:10.1002/1097-0134(20000815)40:3<343::aid-prot10>3.0.co;2-s

Yan, R., Xu, D., Yang, J., Walker, S., & Zhang, Y. (2013). A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Scientific reports, 3, 2619. doi:10.1038/srep02619

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nat Meth, 12(1), 7-8. doi:10.1038/nmeth.3213 http://www.nature.com/nmeth/journal/v12/n1/abs/nmeth.3213.html#supplementary-information

Yi, C., Shen, Z., Stemmer-Rachamimov, A., Dawany, N., Troutman, S., Showe, L. C., . . . Kissil, J. L. (2013). The p130 Isoform of Angiomotin Is Required for Yap-Mediated Hepatic Epithelial Cell Proliferation and Tumorigenesis. Science signaling, 6(291), ra77-ra77. doi:10.1126/scisignal.2004060

Zhang, H., & Fan, Q. (2015). MicroRNA-205 inhibits the proliferation and invasion of breast cancer by regulating AMOT expression. Oncology reports, 34(4), 2163-2170. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(40).

Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 1-8. doi:10.1186/1471-2105-9-40

Zhang, Y., & Skolnick, J. (2004). Scoring function for automated assessment of protein structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4), 702-710. doi:10.1002/prot.20264

Zhang, Y., & Skolnick, J. (2007). Scoring function for automated assessment of protein structure template quality. Proteins: Structure, Function, and Bioinformatics, 68(4), 1020-1020. doi:10.1002/prot.21643

Zhao, B., Li, L., Lu, Q., Wang, L. H., Liu, C.-Y., Lei, Q., & Guan, K.-L. (2011). Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes & Development, 25(1), 51-63. doi:10.1101/gad.2000111

Zheng, Y., Vertuani, S., Nyström, S., Audebert, S., Meijer, I., Tegnebratt, T., . . . Holmgren, L. (2009). Angiomotin-Like Protein 1 Controls Endothelial Polarity and Junction Stability During Sprouting Angiogenesis. Circulation Research, 105(3), 260-270. doi:10.1161/circresaha.109.195156

Zhou, H., & Zhou, Y. (2004). Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins: Structure, Function, and Bioinformatics, 55(4), 1005-1013. doi:10.1002/prot.20007

Zhou, H., & Zhou, Y. (2005). Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins: Structure, Function, and Bioinformatics, 58(2), 321-328. doi:10.1002/prot.20308