Cultural Capital Theory and Predicting Parental Involvement in Northwest Indiana Schools

Abstract

Cultural capital theory, developed by Bourdieu, and applied to elementary schools by Lee and Bowens, provides a theory for predicting how parents are involved in children’s elementary education. Specifically it predicts that parents with greater cultural capital will be more involved, and that involvement will be more efficacious in helping their children succeed. This study uses Epstein’s six-construct configuration of parental involvement and Ringenberg’s Parent And School Survey as the framework and instrument for understanding and measuring parental involvement. Cultural capital theory explained parental involvement moderately well. Parenting, a type of parental involvement, was the strongest predictor of academic understanding.

Keywords: parental involvement, education, cultural capital theory, academic outcomes, demographic predictors

Background

This study explores the multidimensional nature of parental involvement and its ramifications within the context of Epstein’s conceptual model and Cultural Capital Theory. Parental Involvement in their children’s education has become widely recognized as a predictor of positive academic outcomes.
Epstein’s parental involvement framework is by far the most referenced, tested, and widely-accepted conceptual model of parental involvement (e.g. Barnard, 2004; Fishel & Ramirez, 2005; Hoover-Dempsey & Sandler, 1995; Hutchins, Greenfeld, & Epstein 2007; McBride, Bae, & Wright 2002). The six sub-constructs (hereafter simply referred to as constructs) are (1) Parenting, (2) Communicating, (3) Volunteering, (4) Learning at Home, (5) Decision-Making, and (6) Collaborating with the Community. Parenting refers to parents’ actions that foster the children’s learning and cognitive development, not necessarily tied to school. Communicating covers all home-to-school communication regarding children’s academic development and other academically relevant information. Volunteering includes parental attendance in a variety of school events ranging in scope from classroom activities to school-wide events. Learning at Home is more schoolwork-specific than Parenting (construct one). It involves assisting with homework, encouraging hard work in school, and emotionally supporting the child in her/his academic challenges. Decision-Making reflects how much parents advocate for their children’s interests and influence the school environment. Collaborating with the Community refers to the degree to which parents know about and use community resources that support children’s learning (Epstein, 1992).

Although the utility of Epstein’s conceptual model has been widely recognized (Barnard, 2004; McBride et al. 2002), it is not a theoretical model in that it does not explicitly propose the nature of specific relationships among the six constructs, nor between those constructs and other variables. However, Lee & Bowens’ (2006) application of Bourdieu’s (1983) Cultural Capital Theory (CCT), specifically the concepts of field, habitus, and cultural capital (CC), offers a theoretical context as a basis for hypothesizing about those relationships. The field, in this case the school, refers to the environment and the norms that are expected and valued within that environment. Habitus includes the individual’s values, the lens through which the individual sees the world, and one’s consequent actions. The degree of fit between the field and habitus determines the level of CC the parent has within that particular field (school). The more the habitus differs from the field, the greater chance there is for misunderstanding, suspicion, and a devaluing of the individual. Such individuals will feel less welcome and, consequently, be less involved.

The actual measurement of CC varies from study to study. However there are two basic approaches that are advocated or used. The first is to identify the presumed values of the field and then inquire about the degree to which individuals’ habitus matches that field. Specifically this means identifying
what teachers and school administrators see as desirable traits and then measuring the degree to which students or parents share these values. Wildhagen (2009) identifies educational expectations, exposure to and appreciation for “high culture” such as museums, classical music, and art classes, and behavioral styles such as classroom deportment as the values that are held in high esteem by the typical school system field.

An alternative approach is to focus on the demographic indicators that commonly serve to differentiate those with higher levels of CC in the academic setting from those with lower. As stated by Lee & Bowen (2006, p. 198) “…cultural capital is the advantage gained by middleclass, educated European American parents from knowing, preferring, and experiencing a lifestyle congruent with the culture that is dominant in American schools.” Three demographic constructs are identified; financial status, education level of the parents, and race.

Although in practice these two approaches diverge somewhat, conceptually there is little distinction. Lee & Bowen (2006) state clearly that they view CC as involving “personal dispositions, attitudes…knowledge…and connections”. They strongly imply that they chose demographic indicators because, in United States society, those internal qualities (habitus) are largely differentiated according to finances, education, and race. Likewise Threadgold & Nilan (2009), whose qualitative study focuses primarily on beliefs and attitudes, intentionally selected the schools in the sample because each “represents a different demographic and therefore constitutes a separate socioeconomic category”.

Epstein’s parental involvement model and CCT offer different conceptual benefits and will therefore be used for different purposes in this study. Epstein’s model provides the foundational understanding of the structure of parental involvement. It consequently provides the structure for data collection and analysis in this study. The Parent And School Survey (PASS) (Ringenberg, Funk, Mullen, Wilford, & Kramer, 2005), a 30-item questionnaire that reflects the six-construct structure discovered and developed by Epstein, was selected for this study. The PASS generates a score for each parental involvement construct and these scores are used as dependant variables in a series of multiple regressions. Each construct is evaluated for its relationship to various demographics, allowing for the development of profiles of different groups of parents and how they are involved in helping their children succeed in school.

The relationships between each of these constructs and various demographics are evaluated in light of CCT (Bourdieu, 1983). This theory, as adapted to elementary educational settings by Lee & Bowens (2006) makes two broad predictions. First, parents with greater CC are expected to also exhibit higher levels of parental involvement than parents who have less CC. This is expected to be particularly pronounced in parental involvement constructs that require stronger relationships with school personnel. Volunteering, for example, is the parental involvement construct where high CC parents are expected to report much more involvement than do low CC parents. Second, Lee & Bowen’s (2006, pg 212) theoretical expectations and research predict that lower CC groups tend to select parental
involvement activities that are “the least beneficial in relation to student outcomes.” Cultural capital is operationally defined according to Lee & Bowen’s (2006) criteria – family income, parental education, and race. Specifically, the field of public education shares the values held by those parents who have more income and education and are white. Perhaps just as importantly, teachers and school administrators anticipate having more in common with those parents. Additionally, parent gender, student longevity in the school system, and home language are arenas explored in this context. Most elementary teachers are women. Greater longevity gives greater opportunity for parents to acclimate to the school field and to demonstrate the same to school personnel. Speaking English also has some clear advantages in regard to both interacting with school personnel and preparing ones’ children to succeed in school.

This study was conducted in cooperation with the Portage Township Schools and the Merrillville Community Schools. Each school district represents a small city and its surrounding area (pop. 43,956 and 38,685 respectively in 2000) (Mondoro, 2009) in Northwest Indiana with another important characteristic in common. They are each in a period of racial transition. Although Portage is still largely Caucasian and Merrillville remains over half Caucasian, there is a steady increase in the percentage of residents who are people of color. Nowhere is this more evident than among school children. Among the entire population of Portage the percentage of Hispanics ranges from 5 – 11% per census tract and the percentage of African Americans ranges from 0 - 2% (Mondoro, 2009). However, in the school system the percentages are 13.6% Hispanic and 5.9% African American (Indiana Department of Education, 2009). A similar trend can be seen in Merrillville. The Merrillville Community School Corporation serves the residents of seven census tracts. In 2000, those tracts ranged from 1% - 47% (median = 15%) African American and 6% - 11% (median = 9%) Hispanic (Mondoro, 2009). Yet, in the school system in 2000-2001 the percentage of students of color was 41.4% (Indiana Department of Education, 2009). The changing racial demographics are perhaps even more clearly illustrated by the district-wide shift in student population in the past two decades with 15.1% students of color in 1990 and 76.8% in 2008.

Methodology

Participants and Data Sources

The data set was obtained through a series of partnerships with elementary schools in the Portage Township Schools and Merrillville Community Schools (Kindergarten – 5th grade). Ten schools participated during the 2005-2006 and 2006-2007 school years, seven from Portage and three from Merrillville. In these partnerships the schools provided convenient access to parents, legitimacy to the project in the eyes of parents, and a variety of tangible assistance such as space, tables, and access to copy machines as needed. The research team, in exchange, provided schoolspecific reports on parental involvement to each of the schools.
Measurement

The PASS is a 30-item instrument. The first 24 items are designed to specifically measure Epstein’s six-construct parental involvement framework (Ringenberg et al., 2005). The wording intentionally reflects Epstein’s (1992) descriptions. Each item includes a statement followed by five Likert-scale responses (see appendix a). Each of the six constructs is represented by four items.

The PASS items have been previously tested for test-retest reliability, sufficient variance, and accurate qualitative interpretation by subjects (Ringenberg et al., 2005). The majority of the items passed all three criteria. Those items that did not initially meet all three criteria were altered to specifically address those shortcomings.

Also included in the PASS are five specific questions about barriers to parental involvement. These included: lack of time, time of programs, small children, transportation, and work schedule. A sixth item, asking parents to identify any other barriers, resulted in such a small and diverse set of responses that it was not used in further analyses.

A demographics form was designed specifically for this study. It included items that measured the following constructs: Parent Gender, Parent Age, Parent Race, Parent Education Level, Home Language (language used most at home), Family Income, Child’s Grade, Child’s Gender, Child Understanding (degree of comprehension of academic material), Time in School (length of time child has been at that specific school), and primary teacher’s name. Child Understanding (of academic material) was measured by a seven point Likert scale item in which a parent reported how much of the material her/his child understands, ranging from “all material well” to “very little of the material well”.

Several other demographic variables were gathered from other sources. Time in Year refers to how long the child had been in that particular teacher’s class and was based on the date on which the data were gathered. The school principals provided data on Teacher Race, Teacher Gender, and Years of Experience. This data, in conjunction with the parents’ reports of the teacher’s name, allowed these teacher demographics to be associated with specific parents.

Data Gathering

In preparation for data gathering, the principal investigator trained undergraduate college students as researchers to distribute surveys according to a protocol approved by Valparaiso University’s IRB committee. Researchers were stationed at tables during school-wide events. Each researcher began by explaining the purpose of the study and what was being asked of the parent. Simultaneously the researcher handed the parent an informed consent form. Written consent was not required. Consent was assumed if the parent completed the PASS and demographics form. Once a parent gave verbal or visual consent (e.g. nodding and reaching for the forms), researchers led them to first complete the
demographics form, instructing parents to complete it about their oldest child attending that school. Following the completion of the demographics form, parents completed the PASS (appendix a). After parents completed both forms, the researchers stapled the forms together and offered the subject a small snack item to express appreciation for their participation.

Results

Univariates

Originally 821 primary caregivers of elementary school children completed surveys. However 36 surveys were unusable due to missing answers or incorrectly completed forms. Overwhelmingly the most common mistake among those 36 was to answer questions about two or more separate children on the same form. Of the remaining 785 participants, 778 (99.1%) were parents. The remaining seven were grandparents who shared residence and caretaking responsibilities for the children in question. Because the preponderance of participants were parents, and to distinguish them from the children and teachers, participants will hereafter be referred to simply as parents.

The parents were largely female (N = 636, 81%), with a mean age of 35.45 (range 20 – 65, SD = 6.63). The mean family income was $62,894 (median = $60,000), although there was a strong positive skew (6.68) as implied by the range ($1,200 - $750,000). The vast majority (97.5%) reported either completing 12th grade or obtaining a GED. Half (N = 391, 49.9%) completed college, technical school or both. Over 95% (N = 750) reported English as the only primary language spoken at home, while nearly 2% reported Spanish.

Racially the largest group was white, non-Hispanic (N = 468, 59.6%); followed by African Americans (N = 170, 21.7%); Hispanics (N = 115, 14.6%); Asian Americans (N = 9, 1.1%); American Indians (N = 2, 0.3%); and Pacific Islanders (N = 1, 0.1%). Seven participants reported a multiracial background that could not easily be categorized and thirteen did not answer the item. These data are generally reflective of the combined racial composition of the Portage Township Schools (Caucasian 82.3%, Hispanic 12.0%, African American 4.8%, Asian American 0.9%) and Merrillville Community Schools (African American 48.5%, Caucasian 38.5%, Hispanic 12.1%, Asian American 0.9%) in 2006 (Indiana Department of Education, 2007) .

The specific schools were not equally represented, ranging from 37 subjects (4.7% of total sample) to 174 (22.2%). The type of event at which data were gathered was clearly associated with the sample size drawn from a particular school. Parent teacher conferences resulted in an average of 101 parents. Other events, such as the winter musical program averaged only 45.

The children about whom the parents reported were 52.5% female, with a mean grade level of 2.7. Children’s teachers were 93.0% female and 96.7% white, non-Hispanic. The teachers averaged 18.7 years of teaching experience. The difference between the racial composition of the teachers as
compared to the parents has important implications for parental involvement according to Bourdieu’s (1983) CCT.

Parents were asked “Which best describes your child’s progress in school?” They disproportionately reported that their children understood high levels of the material. The highest three categories were answered by 34% (understands all material well), 32% (understands almost all material well), and 22% (understands most material well) of the parents. Because Child Understanding is used only as a dependent variable, the variable was not altered. This allowed it to retain its full seven point range.

Each of the barrier items ranged from one (“A lot” difficult) to three (“Not an issue”). The barriers that were problematic for the most people were “Work schedule” (mean = 2.0) and “Lack of time” (2.1). “Time of Programs” (2.3) and (other) “Small Children” (2.4) were moderately difficult while “Transportation” was listed least (2.8).

Data Cleaning

All the aforementioned demographics and barrier items were tested for skew and kurtosis. Three demographic variables were found to have either a skew or kurtosis outside the - 1.0 to + 1.0 range; parent age (kurtosis = 1.03), family income (skew = 6.68, kurtosis = 93.37), and teacher experience (kurtosis = -1.43). Each was transformed for use in multiple regression analyses using the square root for parent age and teacher experience and the cube root for family income. All scores were brought within the desired range except family income kurtosis (2.86). For ease of interpretation the original variables were maintained for bivariate analyses. Three of the barrier items had a skew or kurtosis outside the desirable range; lack of time (kurtosis = -1.4), transportation (skew = -3.3, kurtosis = 10.4), and work schedule (kurtosis = -1.5). However because of their limited range, these items were not amenable to transformation and were left in their original form.

The parental involvement scales are shown in table one. Parenting is represented by items four, 14, 16, and 19; Communicating by three, six, seven, and 17; Volunteering by one, 12, 15, and 23; Learning at Home by two, five, nine, and 18; Decision-Making by eight, 13, 21, and 22; and Collaborating with the Community by 10, 11, 20, and 24. The PASS items were calculated by assigning numbers to the response categories according to “strongly agree” = 5 through “strongly disagree” = 1. Items six, eight, 16, 17, 18, and 20 are reverse ordered. Therefore when calculating the parental involvement scales for table one those items were reverse scored. Skew and kurtosis scores are also shown in table one. Most scales were negatively skewed, with scores slightly clustered on the high end of the scale. However, the skews were small (-.81 was the largest and none exceeded half the standard deviation). The kurtosis scores were similarly small (-.53 to +.20) and did not exceed half the standard deviation.
The parental involvement scales had missing data ranging from 3% (Volunteering = 20) to 9% (Communication = 69). It was therefore prudent to check for randomness in the pattern of missing data. Parent age, race, gender, education, and income were examined for their relationships to the six scales using the SPSS’ Missing Value Analysis. Missing data for Parenting, Communication, Volunteering, Decision-Making, and Collaborating with the Community were all “Missing Completely At Random” (MCAR). However, the pattern of missing data for Learning at Home was related to age and therefore “Not Missing At Random” (NMAR). Those who answered all items were, on average, two years younger than those who left at least one item blank. Maximum likelihood estimation was used to impute missing values for Learning at Home. Data was not imputed for the five MCAR scales.

It is worth noting that the mean scale scores were fairly high for Parenting, Communicating, and Learning at Home in particular. It is unclear how much this is due to actual high levels of these constructs versus social desirability. It may also be that the parents who attend the school events are disproportionately more involved in multiple ways. These considerations will be addressed further in the discussion section.

Bivariate Analyses and Multiple Regressions

All variables that were significant at the bivariate level in any of the analyses were then analyzed further in the multiple regressions. For clarity in interpretation, continuous independent variables were divided into quartiles when possible and ANOVAs were used. Correlations and t-tests were also utilized. A forward stepwise regression was used in which independent variables were grouped by parent variables, child/family variables, teacher variables, timing variables (Time in School, Time in Year), and finally, barriers.

Parenting

Both Parent and Child Gender were predictive of Parenting scores (t = 1.97, p = .05; t = 2.49, p = .013). Female parents and children both had higher scores than their male counterparts. Parenting was also much higher (18.08 vs. 16.00) among parents whose home language included English (t = 3.85, p <.001), although the number of parents who listed only a language other than English was small (N = 11).

Older parents (40 years and older) reported significantly lower Parenting scores than 35-39 year olds (F = 2.81, p = .04). Although neither 20-29 year olds nor 30-34 year olds were significantly different
from the older groups, both groups’ scores were much closer to the 35-39 year olds. Parents who reported no problems with lack of time also reported significantly higher Parenting than all others (F = 8.8, p < .001). Parents with no time conflicts with school programs also reported higher Parenting compared to those with conflicts (F = 7.3, p = .001). No other ANOVAs found significant relationships. However, correlations found significant relationships between Parenting and Family Income (.11, p = .004), Parent Education Level (.10, p = .006), and Time in School Year (-.09, p = .017).

Parent Age, Child Gender, Family Income, Time in School Year, Lack of Time, and Time of Programs remained significant predictors in the multiple regression analyses (table two). Younger parents, parents of girls, families of greater income, those reporting earlier in the school year, people with more time, and those who had fewer time conflicts with school programs reported higher scores. Parent Gender, Parent Education, and Language dropped out of significance.

Communication

Mothers (17.6) reported higher Communication scores than fathers (17.1). All five barriers were significant predictors bivariately, with those reporting no barriers consistently having higher scores. Income (-.09, p = .031) and Teacher Experience (-.10, p = .011) both correlated with Communication, with lower income families and less experienced teachers associated with higher scores. In the final model only Lack of Time and Time of Program remained predictive, those with fewer barriers reporting higher Communication (see table 3).
Volunteering

Parents whose home language included English reported higher levels of Volunteering (15.90 vs. 15.14). Similar to Parenting results, the oldest parents reported lower Volunteering than other age groups, although they only differed significantly from 35-39 year olds (15.03 vs. 15.93). White parents reported higher levels of Volunteering than Hispanic parents (15.90 vs. 15.04). The strongest bivariate relationship (F = 6.13) found was based on income, with parents in the lowest quartile

Note: For all gender variables, female = 0, male = 1. Dashes indicate that a coefficient was not computed

* p < .05. ** p < .01

significantly less (14.70) than all other parents (15.74 - 15.95) Parents whose children had been in the school longer also volunteered more than those whose children were newer to the school. These scores showed a progression from shortest to longest time at the school. This was not simply a result of child grade, which was not a significant predictor.

In predicting Volunteering, White and Hispanic were both entered into the multiple regression (table
four). The African American/other dummy variable was not entered because African Americans differed from neither whites nor Hispanics bivariately. Only White was significant in the multiple regression, indicating that being white was associated with more reported Volunteering as compared to being a person of color. Higher income parents and those whose child had been in the school longer also reported greater Volunteering. A lack of time and a busy work schedule were associated with lower Volunteering. A busy work schedule was the strongest predictor, followed by being White. The overall model accounted for 18.6% of the variance in Volunteering.

Learning at Home

Parent Gender and Teacher Gender were both predictive of Learning at Home (p <.001, p <.001). In each case scores were higher for females. Parent Age, Child Time at School, and Child Grade were significant predictors of Learning at Home. In each case “newness” was predictive of higher reported scores. The youngest parents reported higher scores than the oldest. Parents whose child had been in that school 0 – 1 year and 1 – 2 years both reported higher scores than those whose child had been there 4 – 7 years. Finally, parents of Kindergarteners and 1st graders reported higher scores than all others. Parents of 2nd, 3rd, and 4th graders reported higher scores than parents of 5th graders. Additionally, being White was correlated with Learning at Home (.09, p = .011). Lack of time, time of programs, and work schedule were all predictive of Learning at Home. Specifically, those who reported that these were not issues for them had higher levels of Learning at Home than those who reported that it was somewhat of a problem or a lot of a problem.

As shown in table five, the overall model for Learning at Home explained 14.5% of the variance. Parent Age was significant in step one but fell out of significance in step two with the introduction of Child Grade. Child Grade, Parent Gender, being White, and Time of Program were all significant predictors in the final model. Having a young child, being a mother (as opposed to being a father), being white, and having no problem with the timing of school programs were all associated with higher scores.
Decision-Making

Teacher Gender was predictive of Decision-Making, with parents whose child had a female teacher reporting higher levels of Decision-Making (12.14 vs. 10.96). African Americans reported higher levels of Decision-Making than did Whites (12.53 vs. 11.86). A correlation was also found between Decision-Making and Parent Education (.09, p = .017). Lack of Time, Time of Programs, Small Children, and Work Schedule were all bivariate predictors with those reporting no problems in these areas also reporting higher Decision-Making scores. The overall model accounted for a modest 7.3% of the variance in decision-Making (table six). However four variables remained as independent predictors; Parent Education, Teacher Gender, Lack of Time, and Time of (school) Programs.

Collaborate with Community

Parents whose children had female teachers reported higher levels of Collaboration with the Community than those whose children had male teachers (14.25 vs. 13.24). White parents also reported higher levels than Hispanic parents (14.51 vs. 13.38). Those with the highest levels of
education had higher scores (14.69) than those with the least (13.72). The lowest income parents reported, by far, the lowest levels of Collaboration with the Community (13.46 vs. 14.30 – 14.54); the difference reaching significance with the two highest income quartiles and almost reaching significance with those in the second lowest income quartile. Scores also ranged widely based on when in the school year the data was collected, although these were not in a consistent pattern. Parent Age was significantly related in the correlation (.088, p = .019) with younger parents reporting higher scores. Every barrier was bivariately predictive of Collaborating with the Community. Those who reported no barriers had significantly higher levels of Collaboration than those with barriers in every barrier area.

Being White and having more education were each associated with Collaboration in the multiple regression (see table seven). The other primary demographic predictors according to the CCT, Family Income, fell out of significance. Time of (school) Program also remained a significant predictor.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>.13**</td>
<td>.13**</td>
<td>.14**</td>
<td>.14**</td>
</tr>
<tr>
<td>Hispanic</td>
<td><.01</td>
<td><.01</td>
<td>.01</td>
<td><.01</td>
</tr>
<tr>
<td>Parent Education</td>
<td>.10*</td>
<td>.08</td>
<td>.08</td>
<td>.09*</td>
</tr>
<tr>
<td>Parent Age</td>
<td>.08</td>
<td>.07</td>
<td>.07</td>
<td>.05</td>
</tr>
<tr>
<td>Family Income</td>
<td>--</td>
<td>.08</td>
<td>.08</td>
<td>.07</td>
</tr>
<tr>
<td>Time in School Year</td>
<td>--</td>
<td>--</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>Lack Time (barrier)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.06</td>
</tr>
<tr>
<td>Time of Program (barrier)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.13**</td>
</tr>
<tr>
<td>Small Children (barrier)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.03</td>
</tr>
<tr>
<td>Transportation (barrier)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.06</td>
</tr>
<tr>
<td>Work Schedule (barrier)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.04</td>
</tr>
<tr>
<td>R²</td>
<td>.034</td>
<td>.039</td>
<td>.041</td>
<td>.084</td>
</tr>
<tr>
<td>F for change in R²</td>
<td>4.94**</td>
<td>3.18</td>
<td>1.03</td>
<td>5.28**</td>
</tr>
</tbody>
</table>

Note. For all race variables, specified race = 1, all others = 0. For home language, English = 0, other = 1. Dashes indicate that a coefficient was not computed. * p < .05. ** p < .01.

Child Understanding

Child Understanding was tested bivariately with all the same variables that are used to predict the parental involvement scales. However, Child Understanding was also tested for its relationship to each of the parental involvement scales as well.

Child Understanding was found to be predicted by Child Gender (t = 3.21, p = .001). Parents of girls reported greater academic understanding than did parents of boys. Parents with more education (F = 3.54, p = .015), higher income (F = 3.00, p = .030), and whose children have been in the school longer (3.79, p = .010) all reported greater Child Understanding. To clarify the income results, the second highest income quartile reported greater Child Understanding than the lowest. The only barrier significantly related to Child Understanding was Lacking Time (p = .003).
Five of the six parental involvement constructs predicted Child Understanding. In every case except one the relationship progressed from highest quartile to lowest, the exception being Volunteering, in which the 2nd and 3rd quartiles were reversed. Parenting was the strongest predictor, with an F score of 12.0. Decision-Making was not related to Child Understanding.

The multiple regression model explained 10.3% of the variance (see table eight). Three variables independently predicted Child Understanding. Highly educated parents reported their children understanding more. Child Gender remained significant as well, indicating that girls were reportedly comprehending more than boys even when accounting for the other independent variables. The only parental involvement variable that remained significant was Parenting, the strongest predictor in the model. Communicating was on the cusp of significance (p = .051).

Table 8. Standardized Beta Coefficients from Stepwise Multiple Regression Analyses predicting Child Understanding

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Education</td>
<td>.11*</td>
<td>.09</td>
<td>.09</td>
<td>.08</td>
<td>.09*</td>
</tr>
<tr>
<td>Child Gender</td>
<td>--</td>
<td>-.15**</td>
<td>-.15**</td>
<td>-.15**</td>
<td>-.13**</td>
</tr>
<tr>
<td>Family Income</td>
<td>--</td>
<td>.07</td>
<td>.06</td>
<td>.05</td>
<td>.04</td>
</tr>
<tr>
<td>Child Time at School</td>
<td>--</td>
<td>--</td>
<td>.02</td>
<td>.03</td>
<td>.04</td>
</tr>
<tr>
<td>Lack Time (barrier)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.11*</td>
<td>.06</td>
</tr>
<tr>
<td>Parenting</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.14**</td>
</tr>
<tr>
<td>Communicating</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.10</td>
</tr>
<tr>
<td>Volunteering</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.01</td>
</tr>
<tr>
<td>Learning at Home</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.04</td>
</tr>
<tr>
<td>Collaborate with</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>.02</td>
</tr>
<tr>
<td>Community</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

R² for change in R²: 6.09*, 6.53**, 0.31, 5.79*, 5.29**

Note. For all gender variables, female = 0, male = 1. Dashes indicate that a coefficient was not computed.

* p < .05, ** p < .01

Discussion

The results are discussed below in the context of CCT. First, each of the six earlier-identified arenas of CC (family income, parent education, parent race, parent gender, time at school, language) is discussed individually in relation to its ability to predict parental involvement. Next, barriers and other predictors are explored, followed by predictors of child understanding. Finally, these findings are examined in light of the predictions made based on CCT.

Family Income

Family Income was a significant predictor in both the Parenting and Volunteering models. A distinct pattern was found in the bivariate relationship between Volunteering and Family Income (see table nine). The lowest quartile (income) of parents were much less likely to volunteer, while other groups were not significantly different from one another. Whether this is due more to the greater logistical challenges that low income parents face or their discomfort due to their lower CC (feeling unwelcome
or uncomfortable at the school) remains unclear.

Table 9. Relationships between Parental Involvement and Demographics Predicted by Cultural Capital Theory

<table>
<thead>
<tr>
<th>Parental Involvement</th>
<th>Family Income</th>
<th>Parent Education</th>
<th>Parent Race</th>
<th>Language</th>
<th>Parent Gender</th>
<th>Time at School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parenting</td>
<td>.12</td>
<td>B</td>
<td>--</td>
<td>B</td>
<td>B</td>
<td>--</td>
</tr>
<tr>
<td>Communicating</td>
<td>B</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>B</td>
</tr>
<tr>
<td>Volunteering</td>
<td>B</td>
<td>--</td>
<td>.15</td>
<td>B</td>
<td>--</td>
<td>.13</td>
</tr>
<tr>
<td>Learning at Home</td>
<td>--</td>
<td>--</td>
<td>.10</td>
<td>--</td>
<td>-.13</td>
<td>B</td>
</tr>
<tr>
<td>Decision-Making</td>
<td>--</td>
<td>.08</td>
<td>B</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Collaborating with the Community</td>
<td>B</td>
<td>.09</td>
<td>.14</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

--- = No relationship B = Bivariate Relationship Number = Beta coefficient

Family Income was a significant predictor bivariately but not multivariately with both Communication and Collaboration with the Community. Although it was a weak relationship it is interesting that Communication was inversely related to family income. The lower the income, the better the reported Communication. Collaboration with the Community followed a pattern parallel to Volunteering, with the lowest quartile parents much less likely to Collaborate with the Community. Again it is not clear whether that is due more to financial and logistical considerations or discomfort with the settings.

Parent Education

Parent Education was bivariately related to Parenting, Decision-Making, and Collaboration with the Community, however it fell out of significance in the Parenting model. In the cases of Decision-Making and Collaboration with the Community the most straightforward explanation is that better educated parents are more familiar with the opportunities and processes of each of these types of Parental Involvement. Particularly in Collaboration, it was the parents with the most education who reported significantly higher scores than those with the least. In past studies parent education was found to be related to Communication (Hill et al., 2004) and Volunteering (Lee & Bowen, 2006). No such relationships were found in this study.

Parent Race

The parental involvement constructs in which race demonstrated the strongest relationships were comparing whites to people of color, as would be predicted by CCT. Volunteering, the construct with which race had the strongest relationship, includes one subjective question, asking how comfortable the parent is visiting the school, and three objective questions about visiting the classroom, attending special events, and Volunteering to help. The schools in which the study took place, although racially diverse in student body, were dominated by white teachers (97%) and principals (100%). In that light it is perhaps not surprising that being white is associated with higher Volunteering scores. This is consistent with previous findings. Brown & Becket (2007) found that African American parents were more suspicious than white parents of white teachers. Lee & Bowen (2006) and Zellman & Waterman (1998) each found race to predict Volunteering.
Learning at Home and Collaboration with the Community were each also related multivariately with Parent Race. How these relationships are each explained by CCT may be less obvious. Learning at Home involves supporting what is happening at school, albeit from home. To do this effectively it is beneficial to know what the school expects from the students, knowledge that is facilitated by frequent interaction. Collaboration with the community does not necessarily involve the school at all. However it does require interacting with other community resources that are likely to share many of the same perspectives (field) with the school system. These results imply that this is the case. However, demonstrating this conclusively is beyond the scope of this study.

Decision-Making was the one type of parental involvement in which people of color (specifically African Americans in this case) reported higher scores at a statistically significant level (bivariately). Specifically, African Americans reported not being confused about their legal rights as parents of students (item eight) and knowing the laws governing schools well (item 21). It is possible that this is knowledge born out of necessity and a conviction that appealing to the legal system is an important avenue of advocacy to ensure a quality education for their children.

Language

Language was significant bivariately but not multivariately for Parenting and Volunteering. Volunteering, and even being aware of events at school are obviously hindered by limited English skills. That English speakers were found to Parent more may require further explanation. Because of the small number who didn’t list English as a primary language in the home and the greater difficulty they presumably had in reading the PASS, caution should be taken in generalizing the results. The small number may also explain why the results fell out of significance in the multiple regression.

Having said that, the mean difference between English and non-English speakers is substantial (approximately one standard deviation). A likely explanation is that as the child develops academically in English, the ability of parents with limited English skills to identify appropriate children’s books (-.15, p < .001) or expose them to relevant materials in English (-.09, p = .015) is steadily hindered. These parents likely have less access to materials that would be helpful in Parenting.

Parent Gender

Parent Gender is included as a possible CC issue because elementary schools have traditionally been a female dominated arena. That 88.4% of the children in this study had female teachers and eight of the 10 principals were women reinforces this idea. Although it is the opinion of the authors that Parent Gender should be included here it is distinct from other types of CC. First, although elementary schools are numerically dominated by women, they exist within the larger culture which is more favorable to men. Therefore the culture at large may serve as a partial counterbalance to the field of the individual school. Second, if the field of a school does favor women’s habitus over men’s, it may negatively impact only a small portion of students, those whose fathers are the only or primary
family representative to interact with the school.

Mothers were more likely than fathers to report high Learning at Home. Interestingly this was true when the teacher was female as well. However there was no interaction effect. Parenting and Communication were both significant bivariately but not multivariately, again with mothers reporting higher scores.

Time at School

Not surprisingly, Volunteering was the one parental involvement construct multivariately predicted by how long the child had been in the school. As parents became more familiar with the school and opportunities for being involved they presumably felt greater comfort in Volunteering. If this line of reasoning is accurate then this is good news for educators hoping to encourage greater involvement. It implies that Volunteering is amenable to change over time. However a longitudinal study is needed to demonstrate this conclusively.

Learning at Home occurred less among students who had been at the school longer. However Time at School fell out of significance in the multiple regression. This almost certainly occurred because of the colinearity between Time at School and Child Grade, which was the strongest predictor of Learning at Home.

Barriers

Several of the barriers were strong predictors of parental involvement. Not surprisingly these were all inverse relationships; as barriers decreased, involvement increased. The strongest predictors, and most common barriers, were Lack of Time, Time of Program, and Work Schedule. Lack of Time remained significant in all multiple regressions except Learning at Home, while Time of Program was significant in all except Volunteering. The relationships between Time of (school) Program and issues such as Parenting, Learning at Home, and Decision-Making which are not schedule dependant implies that this item was capturing more than simply schedule conflicts but perhaps an overall busyness. Of particular note are the strong relationships Lack of Time (.15) and Work Schedule (.21) have with Volunteering, being the two strongest predictors in the strongest overall model (18.6%).

Other Predictors

Several additional relationships were found that are worth noting. The first is that the oldest quartile of parents, Parent the least. Parenting is comprised of reading being normative in the home, having many children’s books at home, the child attending school regularly, and the parent explaining difficult ideas to the child. A possible explanation would have been that older parents had older children, who required less of these activities; however the data did not support this. Child grade was not related to Parenting. It is possible this is an issue of fatigue or a generational difference in Parenting style. A
similar pattern was found between Volunteering and Parent Age, with the oldest parents (and a hand full of grandparents) Volunteering less. The possibility that these relationships could be explained entirely by the inclusion of grandparents was examined. The relationships remained significant even without the grandparents.

Child Gender was a strong predictor of Parenting in the final model. The fact that parents of girls had significantly higher scores than those of boys implies that Parenting is part of a reciprocal process in which child qualities elicit Parenting responses. The one specific Parenting item in which girls had higher scores than boys was whether reading was a regular activity in the home. Perhaps, girls are more responsive to others’ reading or cooperative when instructed to spend time reading.

As mentioned earlier, female teachers were associated with greater Decision-Making in parents. It may be that female teachers are more skilled or more committed to creating an environment that solicits parental Decision-Making.

Child’s grade was, by far, the strongest predictor of Learning at Home, implying that the predictive ability of parent age and time in school is due to their relationship to the child’s grade, especially in light of the substantial Beta coefficient (-.27). Considering that the Learning at Home items consisted of displaying the child’s schoolwork, complimenting the child for success in school, reading daily to the child, and comprehension of child homework, it is not surprising that there is such a strong relationship with the child’s grade in school, a close proxy for child age.

There are two possible, and potentially compatible, responses to this finding. The first is to simply recognize that Learning at Home declines with age/grade. Therefore interventions designed to increase Learning at Home should be judged effective if they simply postpone or reduce the decrease rather than actually increase scores over time. The second is to view and measure Learning at Home in a broader context. For example, Cooper, Lindsay, and Nye (2000) conducted a factor analysis of the types of homework involvement children received, one component of Learning at Home. They found four factors; autonomy support, direct involvement, elimination of distractions, and parental interference (a problematic response by parents found only among high school students). While direct involvement is measured or implied by the Learning at Home scale, autonomy support and the elimination of distractions are not. These latter two aspects of Learning at Home would logically be more important as children age, particularly among children who are mastering the earlier material.

Child Understanding

Although there were many bivariate predictors of child understanding, only three remained as independent predictors in the multiple regression. One was the gender of the child - girls were thought to understand their academic material better than boys. Parent Education was also found to significantly predict Child Understanding. None of the barriers were significant predictors. Of the six parental involvement constructs, five were significant bivariately, but only Parenting remained
significant in the multiple regression. It appears that many aspects of parental involvement are related to academic understanding, but those relationships covary with each other and various demographic predictors. Parenting was the strongest predictor bivariately and that variance is not entirely explained through other predictors. Interestingly, each of the four items of Parenting was found to correlate with Child Understanding. Clearly this aspect of parental involvement is the strongest independent predictor of student learning according to parents’ reports.

Cultural Capital Theory Predictions

Cultural capital theory led to two broad predictions. One, parents with greater CC were expected to report higher parental involvement, particularly parental involvement in which more contact with school personnel is required. Two, areas in which lower CC parents are more involved would be least beneficial to positive student outcomes.

Parents with greater CC did report higher levels of parental involvement generally. However the differences between high and low CC parents were neither universal nor consistent across parental involvement constructs. Instead, several more specific patterns emerged. Being wealthy was not an advantage in being involved. But being poor was a disadvantage. This is consistent with Kingston’s (2001) assertion that CC in the United States tends to view middle class values as optimum. Parent Education, interestingly, was not predictive of parental involvement that is highly dependant on school relationships such as Volunteering and Communication. Instead it was associated with advocacy (Decision-Making) and accessing resources outside the school (Collaboration with Community). Being white was associated with more Volunteering, Learning at Home, and Collaboration with the Community. This does not so much point to one area of parental involvement where whiteness is advantageous so much as indicate that it is pervasive across situations – being in the school, coordination with the school, accessing community resources. Being African American, in contrast, is advantageous in one specific domain of parental involvement – Decision-Making. This is the type of parental involvement most likely to include confrontation or an adversarial relationship. The items included in the decision-Making subscale include knowledge of legal rights as a parent, knowledge of the school-related law, attending school board meetings, and making suggestions to teachers about how to teach his/her child. This may mean that African American parents are more willing, when necessary, to confront systematic injustice.

Gender played a significant role in several areas of parental involvement. This is consistent with CCT. However the importance of child gender in Parenting was not necessarily expected.

Cultural capital theory indicates that the types of parental involvement in which contact with the school is greatest are where CC will have the greatest impact. Those areas are Volunteering and Communicating. In this study, CCT best explained Volunteering (higher income, whiteness, and longer relationships to the school meant more Volunteering), Learning at Home (whiteness and being a
mother meant higher scores), and Collaboration with the Community (more education and whiteness meant higher scores). Cultural capital played a smaller role in Parenting (higher income) and Decision Making (more education) and a negligible role in Communicating. It is not entirely clear why CCT did not meaningfully predict Communication. The Communication scores were comparatively high compared to the other parental involvement constructs for nearly all demographic groups and the overall multiple regression model was the weakest (5.1%). An optimistic interpretation is that the principals and teachers in the participating schools were highly effective in communicating with parents.

The second prediction of CCT, that areas of parental involvement in which lower CC parents were more involved would be least beneficial to student outcomes, appears to have some support from the data. Lower CC parents had higher parental involvement scores in two instances. African American parents reported higher Decision-Making than white parents. Lower income parents reported higher Communication than higher income parents. Neither relationship remained significant in the multiple regression. The African American relationship to Decision-Making was the stronger of the two. Decision-Making, interestingly, was the one type of Parental Involvement not related to Child Understanding bivariately.

Limitations

There are several limitations to this study that should be mentioned. First, perhaps the biggest limitation is that the least involved parents were almost certainly underrepresented in the sample. Anecdotally, principals reported very high attendance at parent-teacher conferences (approximately 90%). But it is likely that those least involved in their children’s education largely comprised the remaining 10%. The problem was almost certainly greater at the other events, in which parent attendance was less “expected” by the school.

Second, some variables in the study were not ideal measures for the construct of interest. Others were not gathered. These methodological choices were out of expediency (e.g. meet parents when they are available) and to obtain as large and representative a sample size as possible (e.g. notasking too intrusive of questions such as marital status). For example, “Time in Year” was used as an indicator of how much time the specific teacher had with the child in question. However, several other constructs were captured in the same measure. The biggest is the specific school. Therefore, if a specific school or community had done a particularly good job of promoting some aspect of parental involvement but was measured early in the year, it would mask the effects of the teacher having more time to cultivate stronger relationships with the children in the overall sample.

Third, some variables included values with very small numbers. The most noteworthy was Language. The variable was retained because of the sometimes substantial results. However, because of the small number of parents who did not list English as the language used at home, caution must be taken in
interpreting results using this variable.

Finally, asking parents about their child’s overall level of understanding of academic material is not the ideal method for measuring children’s academic success. Children’s grades and standardized test scores would provide more objective data. Teachers’ reports would have added a valuable vantage point that is less subject to the influence of social desirability. Based on the opportunistic data gathering methods, these sources of data were not available.

Implications and Application

There are four noteworthy implications of this study. First, when designing programs to increase parental involvement, or some aspect of it, it is practical to bear in mind which parents tend to be less involved and develop strategies to connect with them. It may not be much of a surprise (due to differences in CC) to learn that whites, women, and people of higher income are more involved in their children’s educations. But learning the specific aspects of parental involvement in which they are more involved, and that the differences are not universal across all six constructs, provides much more specific information and allows for more informed targeting in programming. Conversely, in arenas where there were very few predictors (Communication, Decision-Making) interventions may be planned with less attention to specific demographic groups.

It is worth noting that most of the multiple regression models were modest in their predictive ability. This is not necessarily a bad thing. It indicates that differences in income, parental education, and other demographics do not ensure high parental involvement or school success. Most of the variance is unexplained by these models. It also implies that other factors, such as general school environment or specific programming, may play larger roles.

Secondly, the barriers were strong predictors of parental involvement. Although this is not directly explained by CCT, it provides guidance about the challenges teachers and principals face in encouraging parental involvement. Lack of time was a strong predictor of nearly all areas of parental involvement. Conflicts with work schedule were the single biggest predictor of whether parents Volunteered. If there are ways parents can participate in time-limited ways, then promoting those may draw more “time-limited parents” into the parental involvement process.

A third implication is that interventions, particularly those with no control group, can be interpreted in the context of which demographic groups tend to be more or less involved without intervention. The most obvious example of this is the relationship between the child’s grade in school and Learning at Home. Knowing that Learning at Home, at least in its current configuration, tends to steadily decrease as children progress in grade, will allow researchers or program planners to recognize an effective intervention when they may otherwise have missed it.

Finally, while many of the results can be interpreted with a fairly high degree of confidence, there
remain some questions that should be explored with open-ended questions. For example, it would be valuable to explore which teacher or principal behaviors result in greater comfort for parents, particularly in light of the results supporting Lee & Bowen’s (2006) concepts of “field”, “habitus”, and “cultural capital”. If newer, less affluent, less educated, (and in mostly white school systems, people of color) parents are having greater difficulty navigating the school system because of lower CC, understanding the perspectives of teachers, parents, and children in detail about impressions, communication, and values may provide more clues in how to overcome these barriers.

In summary, parental involvement was explained moderately well by CCT. Most types of parental involvement were higher among those parents who presumably, based on demographics, have higher cultural capital. Parenting, which includes activities such as explaining confusing ideas, having children’s books in the home, ensuring children attend regularly, and reading regularly, was the type of parental involvement most strongly associated with academic understanding. A lack of time and scheduling conflicts were strongly and negatively related to all types of parental involvement, not only those that require a physical presence at the school. Finally, qualitative research would help differentiate further the manner in which CCT, as opposed to time constraints, shapes parental involvement.

References

of the Parent And School Survey (PASS). The School Community Journal, 15, 121-134.

Appendix a. **Parents And School Survey (Elementary)**

Below are several statements followed by answers. Please read them and circle the answer that best describes how much you agree with the statement. It is most helpful if you try to answer honestly and accurately. This information helps us plan how to make the program as helpful to parents as possible.