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Many cultures worldwide have left traces of sacred architecture and monuments which often show 
correlation to astronomical events like solstitial sunrises. Virtual archaeology can be used to explore such 
orientation patterns using digital reconstructions and positions of celestial objects computed from modern 
astronomical models. Most 3D editing systems used to build virtual reconstructions of such monuments 
however fail to provide astronomically accurate solar illumination models which can recreate the slightly 
different solar positions of antiquity or even prehistory, and even worse, any usable representation of the 
night sky. In recent years, two systems created independently by the authors of this study have been utilized 
for investigations into the orientation of architecture with respect to celestial processes. Both had their 
advantages and shortcomings compared to each other. One extended a dedicated open-source desktop 
astronomy program with a 3D rendering engine where such monuments can be investigated in the first-
person perspective with an interactive walkthrough. The other system uses a game engine and external 
online resources which provides only solar or planetary positions, but no star data. This study presents 
ways of connecting both systems in an attempt to take advantage of the best of both approaches.  
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1. INTRODUCTION  
For millennia, the sky has fascinated and inspired humankind. Evidence from cave art indicates that 
“sky watching”, a systematic and in parts ritualized activity, must have been performed as early as 
Paleolithic times [Rappenglück 1996], and most civilizations since antiquity have built temples which 
in some form show connections to celestial processes. The best-known example of European 
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prehistory is, undoubtedly, Stonehenge with a main axis oriented toward the summer sunrise and 
winter sunset [Ruggles 2015]. Elsewhere, prehistoric tombs show a preference for sunrise 
orientations, as, for example, is the case with the 7-Stone Antas of Portugal [Hoskin 2001]; and temples 
in Malta show solar orientation patterns [Hoskin 2001; Ventura and Hoskin 2015]. Egyptian pyramids 
show near-perfect cardinal orientation probably derived from stellar observation [Magli 2016], 
whereas temples show axial orientations which relate both to solstitial and equinoctial sunrise 
directions as well as the direction of the nearby Nile river [Belmonte et al. 2009]. In eastern Asia, the 
temples of Angkor Wat show a noticeable correlation with the zenithal passage of the Sun [Barnhard 
and Powell 2003]. Likewise, the civilizations of the New World built temples with calendrical 
alignments related to the Sun or to the planet Venus [Šprajc 1996, 2015].  

Unfortunately, the separation and specialization of (natural) sciences and the humanities causes a 
loss in interdisciplinary knowledge and understanding. Many experts in cultural topics are 
unfamiliar with natural processes observable in the sky, and therefore many potential insights into 
the role of astronomy or of celestial processes in the everyday life of the cultures they are studying 
may easily elude them. That said, the generally accepted results already obtained have sometimes 
made their way via the mass media to the general public, which has responded with fascination and 
enthusiasm.  

In the computer age some important tools for planning astronomical observations have been 
developed. Of these the most important is a sky simulation, or desktop planetarium program. In 
principle, it can reproduce the view of the sky as seen from any spot in the world at any time in 
human history. Increasing levels of sophistication of the programs have brought a corresponding 
increase in realism, and since the early 2000s some of the planetarium programs have made it 
possible to put a panorama photograph (hereafter referred to as “pano”) into the scene to enhance the 
observer’s sense of immersion. Taken at and correctly aligned to an interesting viewpoint within a 
historical site possibly built with some astronomical event in mind such as a solstice sunrise, the 
pano can be used for the purpose of testing archaeoastronomical hypotheses by simulating the sky 
as seen from the relevant position on the site. The simulation can also show slight difference of 
solstitial sunrise directions as experienced today in comparison with those occurring when the 
monument was originally constructed. These differences result from changes in the obliquity of 
earth’s axis to its orbital plane around the Sun. Likewise, it can also demonstrate the slow shift of all 
stars (almost) parallel to the solar annual path (ecliptic) caused by the precession of Earth’s axis, 
which causes the stars to change their rising and setting points as well as their appearance in 
relation to the seasons.  

In general, we may state that geometrical investigations of ancient monuments involving celestial 
phenomena seen overhead can only be performed with proper simulation of the relevant ancient 
skies, which can be easily and reliably provided by these programs. However, the programs do have 
two important limitations. First, until recently, the user has been restricted to a single predefined 
viewpoint. This means that explorative investigations which require making observations at 
arbitrarily changing viewpoints along axes, in corners or other architectural features were not 
possible. Likewise, other possibly important aspects of the astronomical orientation, such as the 
interplay of light and shadow in a corridor or the seasonally changing motion of a patch of sunlight, 
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and even interaction with scene objects like historical observing instruments, cannot be simulated. 
The purpose of this paper is to present a way we have developed to overcome these limitations. 

2. SERIOUS GAMING FOR ARCHAEOASTRONOMICAL RESEARCH 
The term “serious gaming” describes the use of 3D computer game technology for non-recreational 
purposes like real-world process simulations or emergency and rescue planning [Vaz de Carvalho et 
al. 2013]. In a context of cultural heritage, recreations of the past inside a game-like virtual 
environment have gained high popularity, thanks to the appealing view of scenic reconstructions of 
past architecture surrounded by landscapes which can be interactively explored in a way already 
familiar to most users from recreational computer games. The computer game industry also has 
produced several “game engines”, i.e., programming frameworks which support basic requirements 
such as movement (walking, driving, etc.) in a virtual landscape, importation of 3D architectural 
models from modeling programs, use of real-world terrain from geodata services, and interaction 
with scene objects in different ways through the use of physics engines (simulating the effects of 
gravity, momentum, inertia, etc.). In most cases, scientific investigation and outreach applications in 
archaeology focus on the reconstructed architecture, which is most often displayed under a blue 
daylight sky or, at best, a sky decorated with clouds. This is generally implemented through a simple 
skybox, i.e., a translation invariant scene background consisting of just six (or even five, omitting the 
bottom) faces of a cube surrounding the user’s viewpoint. Virtual characters controlled by algorithms, 
or even avatars of other users, can be seen as they are moving in the scene, and in educational 
applications users can interact with characters (e.g., a guide or teacher) to learn about the 
environment as they are exploring it. Game-like interaction with scene objects is often possible when 
it can help to bring life into the scenery to be explored. The game engine framework invites the 
addition of further “eye candy” like vegetation, moving clouds, volumetric shadow effects, dramatic 
weather, or directional sounds from scene objects. Scientifically useful reconstructions should, 
however, abstain from such catchy elements and adhere to archaeologically sound data, observing a 
clear distinction between evidence and hypotheses. Such guidelines can be found in the London 
Charter [Denard 2009] and Seville Principles [Carrillo Gea et al. 2013].  

When it comes to simulating the interaction of past architecture with celestial views, these simple 
skybox models necessarily fail. While it may be possible to set the position of the Sun, also as most 
important light source, in the available sky models, computing the solar position for a certain date is 
usually not available, or, if available, is often limited to dates around the present day. When it comes 
to prehistoric dates, the slight change in obliquity of earth’s axis, which influences the exact rising 
and setting points of the Sun on the horizon, is not found in commonly available sky or sunlight 
modules. And while computing the solar position is still moderately easy, when it comes to the 
simulation of lunar or even planetary alignments of architecture, adding these astronomical 
simulation data poses a considerable challenge for the application developer.  

Zotti and Neubauer [2012a, 2012b] have presented Scenery3D, an experimental 3D visualization 
module for the open-source desktop planetarium program Stellarium [Zotti et al. 2020]. This program 
provides many features for sky visualization and observation planning geared mostly toward 
amateur astronomers and astronomical outreach. Over the past several years, the astronomical 
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simulation models have undergone many improvements especially geared towards applications in 
historical research. The Scenery3D module has been developed to allow a three-dimensional 
investigation of a human-made monument placed into a limited enclosing clip of a digital terrain 
model, thereby facilitating a search of possible astronomical orientation patterns encoded in the 
architecture [Zotti 2019]. In its current state it can represent large triangulated landscapes extending 
tens of kilometers and several millions of triangles, however, not modeling the effects of earth 
curvature may introduce errors. Therefore it is recommended to enclose a 3D model like a single 
monument with potentially relevant foreground landscape extending only a few kilometers by a 
landscape panorama that can be created taking effects of earth curvature into account and models 
mountains in tens of km distance, which do not shift perceivably when the observer walks inside the 
model by a few steps [Zotti et al. 2020]. In very critical cases like notches formed in the landscape by 
the intersection of slopes in greatly different distances, this may still only lead to an approximate or 
preliminary simulation result which should be verified by observation in situ. 

At the same time Frischer and Fillwalk [2012] used a bespoke module developed for the Unity game 
engine to show the insolation (incidence of sunshine) in a particular architectural structure in 
Hadrian’s Villa in Tivoli. In their approach, an online lookup to NASA’s “Horizon” service retrieved 
astronomically accurate solar positions. 

Zotti [2014] has presented another Unity-based simulation environment for the archaeoastronomical 
visualization of a Neolithic circular ditch system in Lower Austria that included a combination of a 
“live” analytical blue-sky model with a simple cloud module and a transparent skybox-like layer of 
superimposable diagrams that enhanced the sky with lines helping to visualize the archaeo-
astronomical topics under investigation. Diurnal tracks for bright stars, the solstitial Sun paths, 
similar extreme paths of the Moon, and an altitude grid could be superimposed. In addition, a “particle 
system” was used to enclose the observer with a stellar sphere accurately computed from a catalog 
of about 9,000 bright stars [Hoffleit and Warren 1991] which could be rotated according to time of day 
and the seasons, however, given that stars did not play a critical role for the scene, important visual 
effects like atmospheric extinction or refraction were not applied to the stars. The Sun was modeled 
as sphere in some (finite) distance which could be moved along the ecliptic path in the sky, relative 
to the stars. It also defined the position of the directional light source which casts shadows in the 
scene and showed a game-like lens flare effect. Along the horizon, the sunlight was reddened, and 
the glare dimmed to simulate atmospheric extinction, so that the actual sunrise and sunset could 
also be observed in a zoomed (magnified) view. The Moon and the planets had been found not to have 
been relevant for the simulation of astronomical details for this site and were thus not included in 
the scene. Since this whole sky module was rendered as the first element in each frame, it appeared 
to be at infinite distance. The simulation was also presented as an outreach feature on the project 
website, but, unfortunately, since it was created, Unity web browser plugins have been abandoned in 
favor of a unified WebGL-based solution.  

Frischer et al. [2016] have presented a study in which the so-called “Antinoeion” in the Villa of Roman 
emperor Hadrian in Tivoli was placed in these two different virtual environments, the Unity-based 
environment developed earlier [Frischer and Fillwalk 2012], and the meanwhile published Scenery3D 
rendering module in Stellarium [Zotti 2015]. One motivation in doing this was for purposes of 
validation: since the altazimuthal data was calculated differently in each solution, it was interesting 
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to investigate whether the results would be—as hoped—the same. They were, and with both 
approaches giving practically the same solution with respect to solar positions and shadow effects, 
the temple could clearly be identified as being oriented towards summer solstice sunrise, 
corroborating the Egyptianizing interpretation of this temple as being dedicated to Antinous, 
Hadrian’s deceased favorite. However, while Stellarium’s simulation of the night sky was found to 
provide potentially new aspects for architectural investigations with respect to stars and 
constellations, of course the plants visible in the Unity environment provided the more natural 
looking views. The temple model was displayed without vegetation and texture-free in Stellarium to 
make it clear that this visualization was created only for investigation of the geometry in connection 
to astronomical orientation, not for colorful illustrations (Fig.1). Later, Frischer et al. [2017] used both 
systems again in an investigation of the Solarium Augusti.   

 
Figure 1. Summer solstice sunrise behind the Colle Ripoli east of Hadrian’s Villa in Tivoli is shown to be in line 
with the main axis of the so-called Antinoeion. The observer is located on the axial path connecting the north-
eastern entrance (seen left) to the main statue (seen at central right). Stellarium can produce views in several 
projections, and a cylindrical projection was used here for a very wide panorama view spanning more than 280° 
in azimuth. The vertical grid lines are 10° apart and enhanced vertical lines in the angular grid indicate due East, 
South and West. The blue curve represents the celestial equator, the orange curve is the solar annual path 
(ecliptic). Screenshot from Stellarium V0.20.0. Model from Frischer et al. [2016] courtesy Matthew R. Brennan 
and Bernard Frischer (Indiana University). 

The Scenery3D module of Stellarium is however not intended to work as complete game engine. Its 
aim is the investigation of architecture and landscape, i.e., only static objects. In the context of a long-
time simulation, parts of the model can meanwhile be made transparent to hide them from view 
when the time set in the astronomy simulator does not fit the period where the architecture part is 
assumed to have been visible [Zotti et al. 2018]. It has already been used for accurate visualization of 
multi-million face models derived from laser scans. It is however not designed to allow motion of or 
interaction with scene objects other than walking around them.  
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3. CONNECTING UNITY AND STELLARIUM 
In some situations it may be desirable to have a complete rendition of an astronomically accurate 
and complete sky in combination with the game-like interactivity available when using a complete 
game engine like Unity. Some simulations aimed at a general public may simply need to look more 
natural by, e.g., including moving plants or other elements of everyday life easily accommodated in 
the Unity game engine, while in a historical context we may be interested in simulating the 
functionality of historical astronomical measuring devices described in ancient manuscripts. A few 
more developments were required to allow interaction of Stellarium and Unity. One was a way of 
controlling Stellarium from external programs. For this, the RemoteControl plugin has been 
developed for use in an exhibition on Stonehenge [Zotti et al. 2017]. Stellarium can now be controlled 
from a menu presented in a web browser, or by other programs using an HTTP based API. External 
programs can activate switches to influence the sky displayed in Stellarium, or retrieve data about 
celestial objects. 

The other necessary component for an immediate interaction between the programs has been 
provided by other developers. Spout, a real-time video sharing framework for Windows, is a free 
programming library which makes use of NVidia’s NV_DX_interop extension to allow using the 
graphic output of one program that has just been created in the graphics card’s framebuffer as texture 
in another program [Jarvis 2018]. The library is already in widespread use in applications mostly for 
media and video artists. Developers of Unity-based applications can make use of the free 
Spout4Unity add-on [Schlupek 2015] which allows the use of Unity both as Spout source (Unity 
display output to be used elsewhere) and Spout receiver (use of other programs’ output as texture in 
Unity). 

Stellarium’s Windows version has therefore also been equipped with an optional Spout output since 
version 0.15.1 and can now be used in several ways to provide an astronomically rich and accurate 
sky background for applications like Unity that can act as Spout receiver. (Similar functionality exists 
for Apple Macintosh under the name Syphon, but support for this has not been implemented yet in 
Stellarium.) In this study, we present three scenarios. 

 Simple Skybox Mode 
This is the technically simplest way of interaction (Fig. 2): We have added a script to Stellarium which 
writes the tiles for the faces of a “sky cube,” a simple method to produce a sky background that 
encloses the whole scene. A whole collection of sky scenes can be prepared, which not only contains 
the six (or five; the bottom face is usually covered by our simulation landscape foreground) textures, 
but also a simple JSON text file which provides data about solar, lunar and Venus positions and 
brightness values which can be used by the Unity-based application to configure the scene-relevant 
illumination and shadows, and optional lens flare effects. Stellarium does not have to run while the 
Unity-based application is running. While dynamic changes in the sky cannot be simulated in this 
mode, the whole set of game-like interaction is available under a sky that is astronomically correct. 

Such prepared skyboxes can also be used for web-based Unity applications which run in an HTML5 
and WebGL enabled web browser, where online retrieval of new skybox data may also happen long 
after the application itself has been created. It may also be possible to trigger creation of new 
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skyboxes by a remote server running Stellarium and feeding such snapshots as required by the 
application, for example creating a pseudo “live mode” (with a permissible one or five-minute delay) 
for the reconstruction of some interesting site, this has however not been tested. 

 

 

 

 
Figure 2. Stellarium is used to prepare skybox textures and data files providing information about the brightest 
celestial light sources. Unity-based applications, also web versions using WebGL, can use these files to 
represent the sky background as a skybox and configure the dominant light source: Sun, Moon, or the planet 
Venus. 

 Live Skybox Mode 
Stellarium is running in the background, and can deliver astronomical data to the Unity-based 
application by use of its RemoteControl HTTP plugin API (Fig. 3). Whenever required, the Unity-based 
application can trigger creation of skybox tiles together with the light data file, and a “file sensor” 
detects availability of new skybox tiles and updates the skybox and shadow-casting light source from 
the dominant celestial light source (Sun, Moon, or Venus).  
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This mode allows setting particular dates and times, or selecting various detail settings in 
Stellarium’s sky like constellation patterns, artwork, or coordinate lines to be displayed in the sky, 
before triggering the next skybox generation. In all other respects, the Unity-based simulation 
behaves just like any other simulation that uses a skybox background.  

When in the application the user wants to have a close-up view of a celestial object, the resolution of 
the skybox texture may become a problem. Celestial objects of interest, especially the Sun and Moon, 
should therefore be added as simple spheres into the Unity scene which should be linked to the 
observer position to avoid parallax shift. Their positions in the sky will be delivered by Stellarium, 
and a combination of azimuth and altitude rotations will place them into their correct position in the 
sky. The “Sun” should then be a self-luminous body, while the Moon should take solar position into 
account for the simulation of its phase. These will then cover the areas which are not sufficiently 
detailed in the sky background. 

These two modes can also be combined, by providing a few preconfigured skyboxes, plus a “skybox 
on demand.”  

 
Figure 3. Stellarium is running in the background and interacts with the Unity-based Simulation. An 
astronomically accurate skybox can be created on demand and will be immediately used. 
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 Spout Mode 
In this scenario, which is limited to the Windows platform, Stellarium is running in the background 
in “Spout mode” (Fig. 4).  

If we want to utilize Stellarium’s sky rendition directly in a typical Unity-based application, we have 
to set perspective projection in Stellarium and then take the usual central perspective camera model 
and display aspect ratio into account to create a rectangular “canvas” in a position permanently fixed 
relative to the player’s eye or “camera” which is completely filled by the Stellarium image of the same 
size, and which completely and exactly fills the camera’s “view frustum,” or field of view. This 
rectangle is then rendered with a dedicated shader ahead of all terrestrial scene content and without 
depth information. The sky in Unity is configured to remain blank. Like in the “Live Skybox” mode, 
other data like date, time, geographical location, or display settings for Stellarium, are exchanged 
with Stellarium’s RemoteControl plugin. The most important switches concerning the sky settings 
can be controlled directly from within the Unity-based application’s menu or hotkeys which forward 
those commands to Stellarium. When required, the expert user can change over to Stellarium and 
switch particular settings not foreseen during application development, or apply Stellarium’s web 
interface on a second screen. 

 
Figure 4. Stellarium is running in the background and interacts closely with the Unity-based application. View 
direction changes are transferred to Stellarium and almost instantly cause a new background to be visible. 
Features in Stellarium can be switched with its RemoteControl API from the Unity-based application. 
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Certainly, the most critical part to keep synchronized is the camera orientation. As the user is moving 
through the virtual landscape, any camera rotation (“head movement”) has to be transmitted to 
Stellarium, which changes its view direction accordingly. Although Stellarium usually has fast frame 
updates (depending on CPU/GPU and scene contents, 18-150fps can be observed on an average laptop 
PC; for regular use, fps can be deliberately reduced to a configurable minimum like 15 or 20fps to 
conserve energy), there is necessarily a small delay between the immediately visible camera 
movement with respect to the content of the foreground scene and the sky which updates in the 
background a few frames later. This may be a problem in applications which target a pure “gaming” 
audience, and we can especially estimate (without having explicitly tested such scenario) that using 
this mode in connection with a head-mounted VR display may become uncomfortable. On the other 
hand, this is clearly the recommended mode of use when it comes to simulation of dynamic changes 
in the sky, e.g., following the movement of celestial objects or also of shadows on the ground. 
Zooming the camera field of view will also yield more details in the sky, in contrast to just zooming 
into the static fixed-size texture maps of the sky box in the other modes. Stellarium delivers again 
positions for the three luminaries which can cast shadows (Sun, Moon, and Venus) from which the 
Unity-based application can configure the dominant light source as directional light source and 
shadow caster, and optionally show a lens flare. As long as the camera does not change orientation, 
the illusion of an extensive sky module which does everything that is known from Stellarium works 
perfectly. 

4. A SAMPLE APPLICATION 
Development of an application providing game-like interaction and an astronomically accurate sky 
rendition as complete as Stellarium provides is very demanding, especially when it comes to 
applications that are developed purely for illustrations or for a limited audience. The “Virtual Park of 
Astronomical Instruments” [Zotti, forthcoming] has been developed as one author’s experimental 
testbed of a Unity based serious gaming application in the domain of historical astronomy. It 
connects to Stellarium via Spout and the RemoteControl plugin. The idea was the creation of a virtual 
park in which historical, pre-telescopic astronomical observation instruments can be studied and 
actually operated under a sky simulation which can give a rendition of the sky for the time when the 
instruments were in use. This may help to better understand observational records preserved from 
the historical period. For a deeper “game-natural” experience a few other aspects of creating a nature-
like virtual environment were also tried. In this section, we concentrate on the game creation 
process. We hope it is in the interest of aspiring modelers to add a few practical observations and 
technical details regarding the handling of models imported from other programs into Unity. We 
have also picked up several tips from various Unity developers in its excellent developer forum. 

Unity provides a means for developing a graphical user interface (GUI) consisting of typical elements 
like buttons or sliders. Apart from informative text panels and a time display, these were not used in 
this development, instead we made use of hotkeys (keyboard shortcuts). Where possible, several of 
the keyboard shortcuts known from Stellarium have been re-implemented and simply trigger a 
forwarding of the requested action to Stellarium. For example, toggling various coordinate grids, or 
the progress of time (only in Spout mode), or creation of a new skybox, can thus easily be handled in 
the same way in this application as it is known to a user of Stellarium. If some setting in Stellarium 
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is not available from the Unity user interface, the user may just switch over to the instance of 
Stellarium running in the background and activate the required setting there. Alternatively, 
Stellarium can be controlled using its web browser interface on a second screen or even second 
computer: it allows connection of several controlling applications which are properly synchronized. 

 Terrain 
For our virtual park, which is placed in the latitude of Vienna, Austria, we started with a simple flat 
piece of terrain. We sculpted a few hills near the border just for decoration. Unity also allows import 
of a real-world digital elevation model (DEM) which must be provided in a 16-bit grayscale raster 
format. The resulting vertical resolution of 64k values should be enough for most applications. The 
vertical step width depends on the user’s detail settings for the terrain properties. The terrain, if 
representing some real-world environment, should have its raster parallel to a known Cartesian 
survey coordinate system (e.g., UTM), and not use geographic coordinates like SRTM data, to avoid 
distortions. Geographical Information System (GIS) programs can be applied to convert between 
required formats or also resample to different resolutions. The local offset to geography-
ical/astronomical north caused by meridian convergence can be compensated by a rotation of the 
sky model. 

There are limits to the texture size for elevation data described in the Unity documentation. If the 
scene has to include more terrain, several terrain tiles can be combined, but in an earlier work [Zotti 
2014] this raster-based or cell-based approach appeared to not scale well, making it impossible to use 
high resolution data, or to add lots of elevation detail, over large areas. High resolution may be 
required to see the effects of solitary rocks or similar features along the landscape horizon. For 
example, a feature of 1m width would appear 1 arcminute wide (the angular resolution of the human 
eye) in over 3.4 km distance [Zotti 2020]. It may be more efficient to use a lower-resolution DEM and 
model the important small details as separate 3D objects. Third-party commercial packages have 
meanwhile become available from the “Unity Asset Store” which promise to allow larger, triangulated 
real-world terrain import, which were however not tested and which were not in the focus of this 
sample application. Another issue for the simulation of large landscapes in Unity (and certainly most 
other similar environments) is the “camera far clipping plane”, a technical requirement which simply 
cuts off any scene elements farther from the viewer than a certain distance. Setting a too large “far 
distance” may cause graphical problems in the nearest vicinity.  

In any case, Unity-based scenes also suffer from the same principal shortcoming as Stellarium’s 
Scenery3D module: The terrain is modeled in Cartesian coordinates on a “flat earth,” so that 
mountains tens of kilometers in the distance appear slightly too high; a mountain peak 1,000 m 
higher than the observer should sink behind the curved earth’s mathematical horizon about 113 km 
in the distance. In a flat-earth simulation, the peak still appears about 0.51°, or about a solar diameter, 
high [Zotti et al. 2020]. A small piece of terrain containing the monument of interest could therefore 
be enclosed by a static panorama or horizon polygon on a transparent skybox as used by Zotti [2014, 
Fig.3] which represents far mountains visible in the background as long as a little motion in the scene 
does not cause a perceivable change of the far horizon. 
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Invisible collider walls can be placed at the limits of a central area of interest or at the outermost edge 
of the terrain, preventing the user from leaving or even “falling off” the game terrain. 

For the scene user or visitor who explores the park in the first-person perspective, development 
started with Unity’s standard FPSController.prefab, to which a few additional components were 
added as described in section 3.3.  

4.1.1 Seasonal Vegetation 

The ground in Unity applications is usually textured by splat maps which give a mix of actual ground-
like textures in sets of four per splat map. A mix of four real textures, like grass, dirt, sand and gravel, 
seemed sufficient.  

It is possible to change the terrain textures on the fly, by programmatically exchanging the textures 
used to render the splat maps. This can be exploited for seasonally adaptive textures, like using fresh 
green grass in spring, yellow-brownish summer grass, darker green again in autumn and frosted 
white winter landscapes (Fig. 5 and Fig. 8). Higher snow cover is of course not possible with this 
approach, but a mix of frosted-over grass and some snow piles visible only in winter appear useful in 
communicating the “winter” message.   

There are also commercial add-on packages available in the Unity Asset Store which deliver 
seasonally changing terrain and trees. Plant growth or seasonal differences in tree lines along the 
horizon can influence the visibility or even apparent directions of rising or setting of celestial objects, 
and the game engine allows experimenting with such ideas, however, these were not tried in this 
explorative demonstrator application. 

4.1.2 Water surface 

To further experiment with a livelier environment, a small pond was placed close to the Sterngarten 
(Fig. 5). Unity’s default WaterProDaytime prefab works sufficiently well to see curly waves in motion 
which reflect scene objects and also the sky (either skybox or the “Stellarium Spout canvas”) for a 
pretty good game-realistic experience, with one lamentable exception: the bright lights (Sun or Moon) 
do not reflect properly in the water to show a “glitter path.” This will, ideally, follow when real-time 
raytracing becomes widely available.  

In the Water script settings, the clip plane offset was set to 1.6m (approximate adult male eye height) 
for more accurate reflection of, e.g., the Milky Way. Even better, this clip plane offset can be controlled 
dynamically to be the difference of camera eye height and water surface height. 

4.1.3 Soundscape 

The border of the terrain has been decorated with a forest, into which a few audio sources playing 
birds’ voices were placed. The audio sources were set to “real 3D” with a logarithmic distance falloff 
to around 50-70 m. All sound clips play permanently but will only be audible when approached by 
the visitor. Alternatively, a trigger like a SphereCollider could be configured, and the audio source 
played only when the visitor is close enough.  
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The first-person controller prefab emits a stomping sound when the user is walking around. Some 
tweaking or even exchanging of sound files may improve the realism of this sound. In closed 
buildings like the Observatory (see section 4.3.4) a “Reverb Zone” can be added for interesting echo 
effects. Try "Stoneroom" or even "Psychotic" settings. 

 
Figure 5. A reflecting water surface can add a very natural element to the simulation. It nicely reflects both the 
game objects and the sky background provided by Stellarium. This scene shows the conjunction of Jupiter and 
Saturn after sunset around winter solstice, 2020. The Moon has been enlarged in Stellarium for clarity. A 
celestial grid and several important coordinate lines have been switched on in Stellarium for explanations of 
celestial processes. Also note the “frosted-over” appearance of the seasonally changing terrain texture. 

 The Stellarium Sky Module 
In this demonstrator, all three playing modes described above are available: 

• Live Spout Mode 

• Live Skybox Mode: The Skybox temporary folder can be the Unity application’s folder 
StreamingAssets/SkyBoxes/live, and must definitely be configurable in Stellarium. For this, 
the Stellarium scripting core object received a function to read environment variables, and 
the ability to write to arbitrary directories. Note that the StreamingAssets folder in the final 
build of the application will be located elsewhere, so after deployment and while running the 
final program, the environment variable must be reconfigured. Also, the folder must be 
configured to be user-writable.  
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• Preconfigured Skybox Mode: A series of prefabricated skyboxes can be loaded as needed, the 
other two modes are disabled. This is also the version of the application that can be built for 
WebGL. 

After the addition of the NativeSpout module in the Unity Integrated Development Environment 
(IDE), you should exclude WebGL from settings for Assets/Plugins/*/NativeSpout, and also limit 
“regular” OS settings to “Windows-only.” Spout does not exist on other platforms.  

To allow loading skybox tiles which can be made on the fly or pre-configured for WebGL, Unity 
requires textures to be stored in a special directory, StreamingAssets. A script in Stellarium writes 
screenshots and the light data file to a directory configured from the environment variable 
STEL_UNITY_SKYBOXDIR, e.g. D:\InstrumentPark\Assets\StreamingAssets\SkyBoxes\live. From 
there, the preconfigured skyboxes and data file should be moved to other subdirectories inside the 
StreamingAssets\SkyBoxes\ directory. Skyboxes can be prepared before compilation or even after. 
Depending on the application, it may appear useful to prepare skyboxes for each hour on winter 
solstice, equinox and summer solstice. The vast possibilities of content delivered from Stellarium, 
including grids, constellation lines, artwork, also the many constellations from other cultures, 
number of labels, etc. should also be taken into consideration. 

A list of skybox names could be offered from a game GUI. For this prototype a skybox selection by 
hotkey seemed to be enough. The WebGL version loads new skybox tiles over the network only as 
requested. In the standalone version, other hotkeys trigger “live skybox” mode and switching to Spout 
mode. 

Important hint: The Skybox shader will not be found in the build unless it is referenced in another 
game object or if you include it manually in the graphics details of the project settings. 

4.2.1 Light Optimizations 

4.2.1.1 Lanterns and other “evil tweaks” 

A pointlight attached to the FirstPersonCharacter can obviously help seeing in the dark or reading 
the instrument scales in daylight. Also, for better visibility, we can allow ourselves to modify the 
brightness of the directional light, in case we want to more clearly discern the shadows cast by 
Venus.  

4.2.1.2 A Sun Impostor for Skybox Mode 

Looking through the instruments in Skybox Mode suffers from the low-resolution cubemap textures 
in which the Sun is just a large bright patch. It is not possible to discern the outlines of the solar disk.  

To remedy this lack of detail we can add a child node, a little sphere, to the scene, and control its 
position in relation to the FPScontroller’s camera, and its orientation and visible diameter to match 
the solar position and size in the sky.  
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 The Observational Instruments 
From previous work several models of astronomical interest had been developed in Google/Trimble 
SketchUp. Unity (version 2017.3 was used for the development described here) has a pretty good 
importer for models created with SketchUp. It fully preserves scene hierarchy, which means we can 
animate the instruments which usually have a joint where an altitude bar (alidade) can be lifted to 
measure the altitude of a celestial object. Some instruments can also be rotated in azimuth (compass 
direction), i.e., around the vertical axis. To allow this, we must define the component axes and ensure 
correct hierarchy of static outer frames, joints, and moving parts, in SketchUp. Then the model can 
be imported to the scene, and C# (or JavaScript) scripts can be developed to control the movement 
(simple angular rotation) of the joints. Occasionally it was useful to invert a joint axis in SketchUp 
and re-import the model when the sense of rotation contradicted the astronomical conventions. 

Put the SKP files to the Assets/Models folder. Use the Unity IDE to “Extract Materials and Textures” 
to subfolders of these names, respectively. Materials will have the model names prepended.  

It is wise to modify all textures from SketchUp: select all textures and set wrap mode to “Repeat”, and 
create MipMaps to avoid aliasing (moire) effects. Likewise, you can modify the materials to achieve 
more realistic effects than can be achieved in SketchUp (e.g., Metallic reflection).  

All parts of the model which the visitor may interact with, be that floor levels, interactive instrument 
elements or just barriers that should impede walking, have to be equipped with a MeshCollider. 

With other modeling programs, the process should be similar. Note that e.g. OBJ models will import 
as one mesh, therefore adding movable joints is not possible. 

To allow interaction only in the vicinity of the instruments, a SphereCollider placed over each 
interesting part of the scene can be helpful. When the player approaches the instrument and enters 
the SphereCollider’s radius, a help panel (text overlay) is displayed which explains the instrument, 
and for instruments that allow direct observation, interaction can be activated. A radius of about 6m 
seems adequate in most cases.  

Note that these trigger SphereColliders by default also make the lens flare vanish when the Sun is 
covered, unless you set all instrument nodes with trigger spheres, but not their child nodes, to the 
Layer “Ignore raycast”.  

4.3.1 Vienna “Sterngarten” 

The “Sterngarten” (Star Garden) is a public star observing platform built 1997-2001 by the Austrian 
Astronomical Society on the outskirts of Vienna, Austria, after plans of astronomy popularizer Prof. 
Hermann Mucke (1935-2019). It consists of a raised platform surrounded by a railing that defines the 
mathematical horizon for an observer standing on a defined spot in the platform center with an eye 
height of 1.5m above the platform. The architecture has been devised for explanations of funda-
mental concepts of astronomical phenomenology [Mucke 2002]. Two high masts in the north and 
south mark the meridian. They bear altitude marks, and while the northern mast carries a disk that 
indicates the celestial North Pole, the southern mast carries altitude marks for the Sun when it 
crosses the local meridian at solstices and equinoxes. Six outlying poles indicate where on the 
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mathematical horizon the Sun rises or sets on the equinoxes and solstices. Short arms indicate the 
azimuth deviation of the sunrise and sunset points caused by atmospheric refraction. A meridian 
line extending to the north indicates the calendar date by the end of the shadow of the north mast 
when it crosses the meridian. A third inclined mast, parallel to Earth’s axis, acts as gnomon for a 
large sundial (Fig.6).  

  

(a) (b) 

Figure 6. Vienna “Sterngarten” as presented (a) in Stellarium and (b) in the game-like Virtual Park of Astro-
nomical Instruments. While the astronomical-geometrical features of the architecture can be completely 
explained and reproduced in Stellarium, the visual appeal of the presentation in the game engine is expectedly 
higher. Stellarium provides the sky background, azimuthal grid and important lines painted in the sky for 
explanations. 

The “Sterngarten” includes in its architecture an immensely rich collection of astronomical details 
and was therefore perfectly suited as test environment. The model had been created in 2010 during 
early refinements of Stellarium’s atmospherical refraction (tested with a static landscape panorama 
exported from the model), development of Stellarium’s Scenery3D plugin [Zotti and Neubauer 2012b], 
and an OBJ export has been included as one of the default 3D sceneries in Stellarium. It had also been 
used in Google Earth’s 3D building layer. Its geometry only works in the geographical latitude of 
Vienna, requiring the placement of the Virtual Park in this latitude. However, the “Sterngarten” does 
deliberately not have any moving parts, therefore, apart from the more natural aesthetics and 
explanatory inserts it does not require the game engine but can be explored, demonstrated and 
explained completely in Stellarium. 

4.3.2 Ghāzān Khān’s instruments 

Another previous study [Mozaffari and Zotti 2012] had resulted in SketchUp models for most of the 12 
instruments presented by Ghāzān Khān in the second phase of Marāgha (around 1300). These consist 
of mostly straight rules with regular graduations which are connected with simple joints and axes 
(Fig. 7). For the user interaction, each instrument is controlled by a dedicated controller script. In the 
respective Update() method we can handle mouse input via a Raycast: depending on the point where 
the mouse click hits the instrument, its axes can move. A sound effect can be linked to the 
instrument’s motion. 
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Figure 7. Virtual reconstruction of one of the instruments of Ghāzān Khān used in the early 14th century in 
Marāgha, Iran, to measure altitude and azimuth. A moving arm (alidade) with sights (peepholes) can be lifted 
inside a rotating square frame. The azimuth (bearing) of this vertical square can be read on the outer, horizontal 
square. The instrument can be moved with the mouse or keyboard commands, or the eye linked to the 
instrument, and so the measurement process (including the discomforting solar glare; see inset) can be 
replayed by the visitor. An almost identical instrument was built in the late 16th century by Danish astronomer 
Tycho Brahe. The scene shows the morning of the equinox, where the Sun, moving on its annual path, the 
ecliptic (orange line), crosses the celestial equator (blue line). Two more instruments are visible in the scene 
background. Note the distortion of the square frames and apparent tilt of the vertical central pole of the 
instrument typical for a wide-angle perspective. 

4.3.2.1 Attaching the viewer’s camera to the instrument 

We want to reconstruct the process of “measurement” with the instruments. For this we need a “users’ 
eyepoint” prepared in SketchUp. Typically, this is a point in line with the sights on the alidade or 
similar device. Orient the green (y) component axis into the designated view direction. Then the 
respective InstrumentController script should include a key-triggered switch of camera position 
between the FirstPersonController and that observer position. While the visitor is observing with 
(looking through) the instrument, the cursor keys can move the instrument as needed.  

4.3.3 The Fakhrī sextant 

In 994 AD, Abū Maḥmūd Ḥāmid b. al-Khiḍr al-Khujandī (ca. 945–1000) built a gigantic instrument near 
Ray (near modern Tehran), the so-called Fakhrī sextant, exclusively for the determination of the 
ecliptic obliquity. It consisted of two walls aligned along the meridian between which a cylindrical 
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trench was excavated [Repsold 1918]. During solar noon, a spot of light cast by an opening in the axis 
of the trench can be observed when it crosses the meridian marked along the meridian arc formed 
by the trench. In the latitude of Ray (35.6°), the Sun stays always above 30° altitude when crossing the 
meridian, and therefore only a sixth of a circle (a sextant), which was carved into the ground for 
stability, was needed for all measurements (Fig. 8).  

 
Figure 8. The Fakhrī Sextant. The scene shows Solar noon at summer solstice, when a patch of sunlight falling 
through a hole at the center point of the arc’s curvature (near the top of the back wall) crosses the meridian 
close to the bottom of the trench (bright spot in the shadow). In winter, the light patch would cross the arch 
close to its near end (just below the surface). The angular distance represents twice the ecliptic obliquity 
determined with this instrument. Also note the automatic vegetation change to dry grass indicating the summer 
season (see Section 4.1.1). The outline of the reconstructed observatory of Samarqand is visible in the 
background. 

Placing this model, created for yet another study [Zotti and Mozaffari 2020], into the virtual park faces 
an interesting problem. The park has been designed around the Sterngarten at the geographical 
latitude of Vienna. For a demonstration of the Fakhrī Sextant we have to allow location travel in our 
exploration. This is pretty simple to achieve, though, by the vicinity trigger script attached to the 
model’s SphereCollider which usually just triggers the display of a text description. In this case, we 
also move the location to the original place where the Sun is considerably higher and can experience 
the seasonal variations of solar noon passage with this interesting instrument. Of course, in the 
skybox modes, we would have to prepare skyboxes particularly for the latitude of this instrument 
and the instants of solar noon at the solstices. 
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Figure 9. The observing cart in the virtual reconstruction of the central meridian instrument of Ulugh Beg’s 
Samarqand observatory [Zotti and Mozaffari 2020] can be moved by the visitor along the curved rails cut into 
the marble surface of the 40 m arc. Looking through the sights onto the sky provided by Stellarium allows the 
recreation of the historical observations from its heydays (around 1430 AD). In this scene, a patch of sunlight 
crosses the meridian arc at local noon. The cart, for which proof has been found in a manuscript, has been 
positioned to measure the transit altitude. The observer would have been placed on the central staircase, while 
the cart would have been operated by two assistants in the side staircases and probably secured by bolts. The 
model also allowed developing the authors’ conviction that this instrument was not a full quadrant, given that 
the cart would not be usable in the vertical uppermost parts of the instrument elsewhere hypothesized as 
complete quadrant. The image has been brightened up for reproduction. 

4.3.4 Samarqand observatory 

The largest instrument of its kind ever created was a meridian quadrant-like instrument that has 
been built by Ulugh Beg (1394-1449) in Samarqand. His astronomical tables of stellar positions 
measured with this and other instruments were considered valued data and were, therefore, 
published in 17th century Europe. However, after Ulugh Beg’s assassination, the magnificent 
observatory was soon destroyed and plundered for bricks until well into the 20th century. During the 
20th century, its remains were excavated, and so a partial reconstruction is possible based on very 
incomplete contemporary descriptions of its lost splendor. The visitor today can visit the 
subterranean trench and the preserved remains of the meridian arc of about 40 m radius (now 
vaulted over for protection) which was based on the Fakhrī Sextant but shows important differences. 
The major part of the arc, which extended high over ground to allow observations of objects also 
lower in the sky than the Sun, was built inside a large, richly decorated cylindrical three-store 
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observatory building. It has, however, not survived the centuries, and the exact shape and mode of 
operation can therefore only be speculated upon. Recently, a clear proof in form of a manuscript has 
been found, showing a movable cart with sights running up and down the rails carved in marble 
plates which still are partially visible in the ruins. We have presented our results elsewhere [Zotti and 
Mozaffari 2020] but saw immediately that it can also be presented and demonstrated in the Virtual 
Park of Astronomical Instruments (Fig. 9). 

Given the fragmentary descriptions of the building, it was only reconstructed approximately as a 
large cylindrical building. Again, a SphereCollider was added around the whole building as trigger 
sphere for GUI explanation text and activation of the interior machinery. As was the case for the 
Fakhrī Sextant, in this case it also triggers a location change to its original setting, Samarqand, to be 
able to recreate observations that may be required to better understand its operation. This helped us 
to understand that with great probability the instrument was limited to measure meridian altitudes 
from 80° to 19° or 18° (these altitudes proven by sculpted altitude plaques found in-situ along the 
marble rails, or in the excavated rubble, respectively), as it would have been merely impossible to 
keep the cart on the rail in a hypothetical full quadrant’s highest, near vertical part. 

In this simulation, the user can explore the building, climb a staircase to the roof, or operate the 
meridian instrument by pushing the cart up and down, and then looking through the instrument, 
fine-tuning the altitude while the observed object moves through the field of view of the sights in 
natural speed.  

 Observations for a WebGL version 
A WebGL version of a Unity-based application which should work in web browsers provides 
attractive opportunities for outreach but also new challenges for the development. For obvious 
reasons, this cannot have Spout interaction, but the instruments can be operated, and a few skyboxes 
should be loadable on demand.  

Some precautions have to be taken for building such a variant. Most important, the whole program 
should be limited in size to reduce download times, and should have limited scene complexity, 
especially for non-essential elements such as a large number of detailed trees in the terrain. The 
application of various scene optimizations provided by the Unity IDE, for example occlusion culling 
and static batching for the non-moving model parts, also appears to be more important in this 
version than in the desktop application. It is generally recommended to load data only as required to 
allow a fast start. In our application, only the skybox textures can be easily loaded on demand, which 
however even allows creation of skybox sets after the application itself has been deployed. Also, 
texture size can generally be reduced, or more aggressive texture compression can be applied. It 
seems advisable to limit skybox tiles to 512x512 pixels in the WebGL version for fast data transfer. 

The Spout scripting object and its target, the Stellarium screen background, must be disabled. In code, 
this can be done in their Awake() methods with #if UNITY_WEBGL … #endif preprocessor macros. 
Other C# functionality not available in the WebGL version, like screenshot creation, can be excluded 
from building in the same way.  

In the build settings, WebGL memory has to be increased to 500MB for reasonably smooth operation. 
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4.4.1 Website Integration 

The default template for WebGL builds is a half-sized window in a full-screen page without 
surrounding text. The default CSS tags seem to leave much room for improvement. Some 
modifications in the CSS and index.html allowed to provide a textual introduction with the game 
window on the right side. The demonstrator application can be visited on 
https://homepage.univie.ac.at/Georg.Zotti/InstrumentPark/index.html.  

5. CONCLUSION 

Serious gaming for applications in archaeoastronomy and historical astronomy has become 
available and is more accessible than ever. The Scenery3D plugin of Stellarium can be used to explore 
static models and large landscapes in OBJ format and can also make use of Stellarium’s many 
camera projections which allow wide-angle views that appear much more natural than the standard 
OpenGL perspective camera model can deliver. More lively applications, which allow manifold 
interaction possibilities and that we like to term “Advanced Virtual Archaeoastronomy,” can be 
created by combining a game engine like Unity with the astronomically solid sky background 
created by the Stellarium desktop planetarium.  

It should also be possible to retrofit an existing Unity-based simulation with this module for 
astronomical investigation, which may offer significant new insights for interactive investigation 
and replay of possible astronomical orientation schemes if the scene has been built with accurately 
georeferenced models. Of course, for that to happen it will be important to create a web-based 
repository of openly available accurate data and 3D models of heritage sites to be investigated or 
demonstrated. At the moment, no such repository exists. 

The basic ingredients of a Unity package, C# code and a “Stellarium controller prefab” for Unity, are 
available from the Stellarium project site at github, https://github.com/Stellarium/stellarium-unity.  
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