
 
 

Studies in Digital Heritage, Vol. 1, No. 2, Publication date: December 2017 

Automatic Underwater Image Enhancement using 
Improved Dark Channel Prior   
MARCO BLOCK, Hochschule für Technik und Wirtschaft Dresden, Germany 
BENJAMIN GEHMLICH, Hochschule für Technik und Wirtschaft Dresden, Germany 
DAMIAN HETTMANCZYK, Hochschule für Technik und Wirtschaft Dresden, Germany 
 
 
 

Images taken under water are often of a monochromatic appearance, due to the physical interaction 
(absorption and reflection) between particles and light sources. Enhanced images with improved 
saturation, for which the monochromatic character has been corrected, are more suitable for generating 
3D models and for identifying structures and materials by human experts. In this paper, we present an 
automatic method to identify the mean water color from a set of images. This mean color represents an 
average gray and is used to describe a new axis in CIELab color space. An extended color variance and a 
histogram equalization are simultaneously applied to the image. The main advantage of this method is the 
fully automatic enhancement process. An UUV (Unmanned Underwater Vehicle) can operate without 
providing a color reference scheme. The presented method was implemented in the software JEnhancer, 
which is freely available. JEnhancer was successfully tested in several documentation campaigns, and was 
integrated into the videogrammetric software pipeline Archaeo3D to produce 3D models from videos. 
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1. MOTIVATION AND INTRODUCTION 
Archaeologists greatly profit from technical progress in camera technology. The photogrammetric 
approach, in particular to catalogue single objects [Santos and Ritz 2013] or in combination with UAVs 
(Unmanned Aerial Vehicles) to document complete excavation areas [Remondino 2011], is an easy-
to-use alternative to traditional spatial sensing methods and is currently evolving toward becoming 
the standard documentation method.  

Underwater photogrammetry depends on clear water conditions and adequate lighting. 
Unfortunately, the color range decreases with increasing depth [Iqbal et al. 2007]. The longer the 
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frequencies, the more absorption occurs. Due to absorption, the water color often seems bluish (Fig. 
1a).  

The method presented here using an improved Dark Channel Prior [He et al. 2011] is implemented in 
the software JEnhancer. It estimates the mean water color automatically and corrects the images 
before the 3d reconstruction process is applied (Fig. 1b). Not only absorption has an influence on 
visual perception, but scattering is also an important factor. Depending on particle interaction, light 
energy will be redirected between the objects and the observer. To compensate for this effect, our 
software also improves image contrast. 
 

 
a) 

 
b) 

Figure 1. a) The image shows an orthoimage of the campaign in Veruda/Croatia 2016 [Scholz et al. 2016], 
generated from the original image data taken by a GoPro Hero 4 BE; b) The result after, improving the input 
images with JEnhancer. 

To improve underwater images, different restoration and image enhancement methods were 
developed in the past [Schettini and Corchs 2010]. This is an ongoing process, but unfortunately no 
free tools for practical use are currently available. This might be the reason why many archaeologists 
use the automatic color correction of proprietary software like Photoshop1 [Bianco et al. 2015, Bruno 
et al. 2015]. The tool presented here, JEnhancer, is a candidate for closing this gap.  

This paper is structured as follows: first, Section 2 introduces related aspects of underwater 
archaeology, photo- and videogrammetry, gives a brief introduction to light properties under water 
and presents state-of-the-art image enhancement approaches. Next, Section 3 introduces the freely 
available software JEnhancer, gives some use cases and describes the internal workflow. Interim 
results from different campaigns and experiments are discussed in Section 4. Finally, the conclusion 
as well as perspectives for future work are presented in Section 5. 

                                                        
1 http://www.adobe.com/de/products/photoshop.html 
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2. THEORY AND RELATED WORK 
The workflow of underwater documentation is still complex and expensive, even when laser 
scanning is deployed [Moisan et al. 2015]. Scientific divers need special qualifications to work under 
water [Papadimitriou 2015] and their diving time is limited. To reap the benefits of current 
technological developments in small diving robots, so-called UUVs (Unmanned Underwater 
Vehicles), projects like Archaeonautic2 or ArcheoROV3 were initiated. They share a focus on low-cost 
solutions for underwater archaeology. Beside the documentation of known archaeological sites, 
potential sites can be explored easier and more cost-effectively. Georeferencing under water is still 
a crucial challenge, because no GPS signal is directly available. To solve this, indirect solutions are 
often deployed [Baletti et al. 2015, Scholz et al. 2016]. 

 Photogrammetry and Videogrammetry in Underwater Archaeology 
The importance of 3d photogrammetry [Hartley and Zisserman 2004] in archaeology has increased 
[Baletti et al. 2015, Pruno et al. 2015] like few other technologies in the field in recent years. The results 
of terrestrial and underwater photogrammetry are quite comparable [Troisi et al. 2015]. Structure from 
Motion (SfM) is a popular and accurate method for deriving 3d structure from sequences of single 
images [Wei et al. 2013, Hartley and Zisserman 2004]. Within the SfM processing flow, feature 
extraction is the first step and serves to reduce all available pixels into a smaller set with relevant 
information. One of the most common feature detectors, used in various applications like object 
recognition, image retrieval and 3d reconstruction, is SIFT [Lowe 1999], published and patented by 
Lowe. There are different approaches to speeding up feature detection, like SiftGPU4 or related 
methods like SURF [Bay et al. 2008]. But in robotics, when computer vision needs to work in real-time, 
other solutions are more common [Miksik and Mikolajczik 2012].  

As a complete 3d reconstruction software, AgiSoft PhotoScan5 is widely used. Beside proprietary 
solutions, free software packages like VisualSFM6 and open source packages like MicMac 
[Deseilligny and Clery 2011], OpenMVG [Moulon et al. 2013], and Bundler [Snavely et al. 2006] are also 
available. In contrast to related projects, we successfully use videogrammetry [Greenwood 1999, 
Pappa et al. 2003, Nistèr 2004, Pollefeys et al. 2004] instead of the usual photogrammetry in aerial and 
underwater environments.  

In the related research area of real-time robotics, an important focus is on outfitting autonomous 
vehicles with sensors that produce continuous 3D information about the surroundings. Laser 
scanning and camera-based approaches play key roles in this effort [Lime et al. 2014]. Adopting such 
(near) real-time approaches for videogrammetric documentation in archaeology has significant 
advantages, given the fact that data recording must often be completed in a small time window. Most 
importantly, it is possible to generate preview models and assess their quality on site. Time-
consuming processing at high detail levels can be deferred to a later time. Our experience with 

                                                        
2 http://www.archaeonautic.de 
3 http://arc-team-open-research.blogspot.de/ 
4 http://www.cs.unc.edu/~ccwu/siftgpu/ 
5 http://www.agisoft.ru/products/photoscan/ 
6 http://ccwu.me/vsfm/ 
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recording data from a moving vehicle clearly shows videogrammetry to be a fault-tolerant, cost-
effective and easy-to-use approach [Gehmlich and Block 2015]. 

 The project “Archaeonautic” 
In the project Archaeocopter7, a semi-automatic software called Archaeo3D was developed to 
optimize and control the complete reconstruction process. The resulting 3d models are strongly 
dependent on the quality and the correlation of the input images [Gehmlich and Block 2015]. Videos 
and photos are automatically imported and processed. The software is able to reorder or adjust the 
processing pipeline’s modules and adjust the parameters, depending on the current hardware and 
the recording situation and complexity. VisualSFM and CMPMVS [Jancosek and Pajdla 2011] are the 
most important tools used by Archaeo3D. 

Archaeo3D is also the key software element of the project Archaeonautic which is focused on 
underwater archaeology (Fig. 2). 
 

 
a) 

 
b) 

Figure 2. The images show “Eckbert-II” in lake Mondsee (Austria): a) a flexible camera and lighting setup can 
accommodate different recording needs and environmental conditions. To document the pile dwellings in lake 
Mondsee, three GoPro Hero 4 BE were attached to the UUV. Subsequently, weights and buoyancy bodies were 
combined to balance the UUV; b) to improve the control of the UUV, a human diver supports the cable. 

The project’s work horse UUV, Eckbert-II, is still under development and has successfully completed 
campaigns in: Zwischenahner Meer/Germany (cooperation with Niedersächsisches Institut für 
Historische Küstenforschung), Veruda/Croatia (cooperation with DAI Frankfurt, ICUA Zadar/Croatia), 
and UNESCO World Heritage Site pile dwellings at lake Mondsee/Austria (cooperation with 
Kuratorium Pfahlbauten). The projects “Archaeocopter” and “Archaeonautic”8 (HTW Dresden and 
Freie Universität Berlin) were initiated in cooperation with the German Archaeological Institute (DAI) 
and the Archaeological Heritage Office in Saxony. The philosophy of both projects is not to maximize 
the level of detail achievable using current recording technology, but to focus on what is actually 
required for different practical purposes.  

                                                        
7 http://www.archaeocopter.de 
8 www.archaeocopter.de 
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Following this philosophy, we try to find cost-effective alternatives to established technologies in 
archaeology and to make them usable for everyone. The need to improve underwater images for 3d 
reconstruction was the motivation to develop JEnhancer, which is provided free for research 
purposes only. 

 Absorption and Scattering 
Radiative transfer theory provides the basis for understanding light propagation in water [Mobley 
2001]. The quality of underwater images strongly depends on inherent optical properties [Jaffee 2001]. 
Temperature, salinity and the composition of water influence the attenuation of light underwater 
due to scattering and absorption effects throughout the light path [Berwald 1995].  

Scattering changes the direction of light, depending on dissolved organic matter or small, suspended 
biological organisms [Stramski 2004]. It also reduces the contrast over a given distance between 
object and viewer. Light rays should lose their intensities punctually, but the missing part is 
compensated by the surrounding scattering [Cozman and Krotkov 1997]. This effect limits the range 
of recording distances underwater with a camera. 

The absorption process reduces the light intensity between the lighting source and the photographed 
object and is dominated by the interaction of photons with water molecules [Schettini and Corchs 
2010]. If a photon collides with a molecule, it is absorbed and converted to heat energy [Stramski 
2004]. This interaction depends strongly on the light’s wavelength. The longer the frequency, the 
stronger this attenuation. That is the reason why seawater often takes on a bluish appearance. If the 
concentration of organic matter and other dissolved materials is higher, the visual spectrum shifts 
towards green or sometimes red (Fig. 3). 

Most methods focusing on underwater image enhancement deal with absorption and scattering, due 
to their strong impact. 
 

 
a) 

 
b) 

Figure 3. a) this image was taken in Kamenz/Germany 2016 and looks greenish; b) in Zwischenahner 
Meer/Germany 2016 the specific chemical compositions delivered reddish images. 
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 Automatic color correction in Photoshop 
To improve one image without having any other information, Photoshop’s automatic color correction 
(Auto Color) can produce promising results for underwater images (Fig. 4). 
 

 
a) 

 
b) 

Figure 4. a) an image with a reference color table, taken by Roman Scholz (DAI) with Canon EOS 5D Mark III 
camera in Veruda/Croatia 2016 (Roman Scholz, DAI); b) right: The improved image using the automatic color 
correction of Photoshop CS 6. 

Photoshop’s Auto Color adjusts contrast and color by identifying shadows, midtones, and highlights. 
The default version neutralizes the midtones using a target color of sRGB 128 gray and clips the 
shadows and highlight pixels by 0.5%9. Auto Color is a common method for improving underwater 
images [Bianco et al. 2015, Bruno et al. 2015].  

But, as Fig. 5 shows, this method has its disadvantages. 
 

 
a) 

 
b) 

Figure 5. a) an image with low contrast taken with GoPro Hero 4 camera in Mondsee/Austria 2016; b) the 
improved image using the automatic color correction of Photoshop CS 6. 

                                                        
9 https://helpx.adobe.com/photoshop/using/making-quick-tonal-adjustments.html 
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To apply this automatic correction to a set of images, it is essential to have similar light conditions 
and high similarity between the image color spaces. Beside proprietary, paid-for solutions like 
Photoshop, free programs such as Gimp10 or MS Paint.net11 also feature tools for automatic image 
enhancement. 

During the excavation campaign in Veruda/Croatia in April 2016, this method was applied [Scholz et 
al. 2016]. The documented shipwreck was excavated, prepared, and documented step by step using a 
multi-functional support bridge including a measuring slide (Fig. 6). 
 

 
a) 

 
b) 

Figure 6. Underwater archaeology often involves the installation of fixed frames. In Veruda a multi-functional 
support bridge (6x2 meter) including a measuring slide was develop. Photo recorded by: a) Eckbert-II; b) Mladen 
Pešić (ICUA) during the excavation process [Scholz et al. 2016]. 

Afterwards, the challenge was to integrate the recorded images, each taken under different 
light conditions, into one mosaic using aSPECT3D12 (Fig. 7). 
To produce this good-looking orthoimage, the team of Roman Scholz required a 
sophisticated workflow including a multi-functional support bridge to produce images at 
equal distances and angles [Scholz et al. 2016].  
Given the cost and slow speed of operation, it seems more reasonable to search for software 
solutions that can reliably correct color spectrum differences in input image series. 
 

                                                        
10 http://www.gimp.org 
11 http://www.getpaint.net 
12 http://aspect.arctron.de/de/ 
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Figure 7. A complete excavation process was photogrammetrically documented by Roman Scholz (DAI) with 
Canon EOS 5D Mark III camera in Veruda/Croatia 2016 [Scholz et al. 2016]. All photos were corrected by using 
the automatic color correction of Photoshop CS 6 and a 3d model was reconstructed with aSPECT3D. The 
resulting orthoimage is shown here. Images with individual color spaces resulting sometimes in blending 
artefacts (yellow framed boxes). 

 Related image enhancement methods 
Most related approaches of image enhancement for underwater imagery can be classified into image 
restoration and image enhancement methods [Schettini and Corchs 2010].  

Image restoration methods are typically based on optical models which describe the degrading 
process of the recorded image. Classical linear models [Mertens and Replogle 1977] and other 
degradation functions like polarization-based methods [Schechner and Karpel 2005] have been 
examined. In combination with well-known parameters, it is possible to reconstruct the original 
scenery with near perfection, based on the recorded image. This allows good results, but the 
determination of the right parameters is often difficult.  

Image enhancement approaches do not need any information about the environmental conditions 
when recording the images. Subjective quality assessment is used to enhance the image data. Often, 
different classical methods like homomorphic filtering, wavelet denoising, anisotropic filtering and 
color correction are combined and used independently and successively [Bazeille et al. 2006]. The 
advantages of different color spaces like HSI [Iqbal et al. 2007] or YCbCr [Bazeille et al. 2006] are also 
exploited. Due to the subjective factor, the comparison and evaluation of these approaches is more 
challenging [Schettini and Corchs 2010]. 
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The atmospheric haze effect is similar to the effect of image degradation for underwater images 
[Fattal 2008], but much more dominant. Assuming that we have an image 𝐽 without any haze effects: 
The longer the distance between observer and surface point, the more the pixel at position x in the 
recorded image 𝐼 converges towards the water color 𝐴. The terms “airlight” or “veiling light” are more 
common for 𝐴 in the research field of haze removal [Koschmieder 1924] and can be used to define 
the following equation 

𝐼 𝑥 = 𝑡 𝑥 𝐽 𝑥 + (1 − 𝑡(𝑥))𝐴 

where 𝑡 is the mean transmission and can be interpreted as a kind of distance value. The direct 
influence of t in 𝐼 as a weight in a linear transformation is shown in Fig. 8. 
 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 8. Different values for 𝑡 and their effects on the image: The image on the left side represents the water 
color 𝐴 and the image on the right side the image 𝐽 without any haze affects, taken in Veruda/Croatia in 2016 
and enhanced: a) t=0; b) t=0.25; c) t=0.50; d) t=0.75; e) t=1.00. 

If t=1 then the distance is zero and we take the real color, if 𝑡 = 0 then the distance is infinitive and 
we take the water color. This equation is defined for all color channels. Haze removal algorithms are 
focused on restoring the image 𝐽.  

This field of research is rich in ideas and touches concepts such as Markov Random Fields (MRF) 
[Tan 2008] and Independent Component Analysis (ICA) [Fattal 2008]. But the most promising results 
were produced with the Dark Channel Prior [He et al. 2011] , by which the current version of JEnhancer 
is also inspired. 

3. AUTOMATIC UNDERWATER IMAGE ENHANCEMENT 
The main idea of the automatic image enhancement process is based on the observation that the 
existing color spectrum decreases with increasing distance. The best estimate of the water color 
therefore corresponds to the pixels with the smallest color spectrum. This idea is similar to haze 
removal approaches using Dark Channel Prior [He et al. 2011]. However, the method discussed here is 
based on estimating the atmosphere’s color, owing to brighter pixels. This is quite different from 
estimating the water color, which is more green, blue or red/brown.  

Research based on Dark Channel Prior often follows rigid approaches, where water is assumed to 
have most attenuation on the red color channel. Consequently, the dark channel will be estimated 
by the relation between red and blue/green channels [Carlevaris-Bianco et al. 2010]. Other 
researchers tried neglecting the red channel [Wen et al. 2013].  
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Our approach, as presented here, is more generic in nature and needs neither a specification of water 
color nor any other difficult a-priori assumptions. In fact, the only assumption that our automatic 
methods makes is that there is at least one image in which the natural water color can clearly be 
seen (see section 4.3). 

 Water color estimation in a single image 
The color space CIELab is based on the theory of Opponent-process [Hering 1878] and was invented 
by Commission Internationale de L’Èclairage (CIE) in 1976 [Commission Internationale de L'Eclairage 
1976, Schanda 2007]. Containing all perceivable colors in a perceptual uniform space, it turns the 
Euclidian distance between two colors to a numeric quantifier for color divergence. Vice versa, 
applying the same operation on any color results in consistent perceptual changes (Fig. 9). 
 

 
Figure 9. The upper group represents the color values of sRGB color space (first row) and CIELab (second row), 
whereas the lower group shows that correspond with each color's brightness. Colors within the rectangle on 
the left side are identical, while all other colors are interpolated in equal steps from the light blue to the right 
end color. As shown above, the sRGB colors are first getting darker, followed by an increasing brightness, while 
the CIELab colors are continuously decreasing in brightness.  

Our motivation for choosing CIELab as color space instead of e.g. sRGB will become clear with the 
last step discussed in section 3.4, when color correction is applied. 

Furthermore, colors are expressed as degrees, using the polar coordinates 𝑎 and 𝑏 and their 
luminance L. Therefore, colors are independent from primary color channels like sRGB and more 
general. 

All images will be converted to a modified CIELab space, representing a unit ball. To estimate the 
water color of an image 𝐼 given in CIELab color space, we detect the local minimum and maximum 
for every pixel 𝑋 in a neighborhood Ω(𝑋) around the center 𝑋 separately for every color channel C. 
The size of the neighborhood Ω 𝑋  depends strongly on the image content. As an interim result, we 
calculate the intensity maps 𝐼1234 𝑋  and 𝐼1564 𝑋 : 

sRGB 

CIELab 

sRGB 

CIELab 
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𝐼1234 𝑋 = min
:;<(=)

(𝐼4(𝑌)) and 𝐼1564 𝑋 = max
:;<(=)

(𝐼4(𝑌)) 

One color channel of image 𝐼 with a high variance  

𝐼A5B4 𝑋 = (𝐼1564 𝑋 − 𝐼1234 𝑋 ) 

is sufficient to exclude the pixel 𝑋 from of the list of candidates. Therefore, we detect the maximum 
of all color channels: 

𝐼A5B 𝑋 = max
2;C

(𝐼A5B2 (𝑋)) 

Inside this map of variance, the position of the minimum represents the area with the smallest color 
spectrum all over the image and is therefore a high potential candidate to represent the water color. 

 Extension to pyramid approach 
Plain, uni-colored areas can still be a problem. To minimize their impact, an image pyramid 𝐼 of the 
image 𝐼 is first calculated. The water color estimation is now applied on every scale, which results in: 

𝐼A5BDEFGH 𝑋 = 𝐼A5BIJK 𝑋
L

MNO

 

The minimum represents the water color, so we just need to detect the right position: 

𝑃 𝑥, 𝑦 = arg	(min
V;W

(𝐼A5BDEFGH 𝑢 )) 

Finally, to reduce up and down scaling while estimating the water color out of a sequence of images, 
a mean value can be applied 

𝐴3 =
𝑛 − 1
𝑛

𝐴3Z[ +
1
𝑛
𝐼(𝑃) 

where 𝐼(𝑃) represents the position of the estimated water color in image 𝐼. 

 Water color estimation algorithm 

To detect the water color 𝐴 of an image set 𝐼[, 𝐼\, … , 𝐼[3, the following algorithm, given in pseudocode, 
is applied: 
1 for i:=1 to n  
2  load image 𝐼2  
3 build image pyramid 𝐼2 
4 calculate local color spectrum 
5 calculate pyramid sum 
6 detect minimum min	(𝐼2) 
7 if (min	(𝐼2) < 𝑚) 
8  apply min	(𝐼2) to 𝐴	 
9 endfor 
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The bias 𝑚 (see line 7 of the pseudocode above) represents the contrast threshold and is currently 
set to 6%, which is three times higher than the contrast threshold of 2% visible to human beings 
[Koschmieder 1924]. Underwater images taken at low light conditions are prone to noise. To reduce 
the influence of noise, we empirically chose a higher setting for 𝑚. 

 Correction of color space 
We use the advantage of CIELab now: The exteriors represent fully saturated colors and these colors 
are free of distortion effects, such as those caused by absorption.  

Transforming Koschmieder’s equation to vector representation, makes it easier to understand the 
reasoning behind the color manipulation: 

𝐼 𝑥 = 𝐴 + 𝑡 𝑥 (𝐽 𝑥 − 𝐴) 

The color of each given image pixel has its origin in the water color 𝐴. The vector direction is given 
by the difference between original color 𝐽 𝑥  and 𝐴 using the transmission 𝑡 as parameter within the 
range 𝑡 ∈ [0,1]. In this representation, it is obvious that every color has to be on a line between the 
origin color and the water color 𝐴. Due to the fact that JEnhancer works without any depth maps, the 
origin color has to be at least the given color pixel with 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0, following the line up to the border 
of the color space. 

Furthermore, it is ensured for border colors to be free of any possible manipulation. JEnhancer tries 
to restore these pure colors. In fact, He’s Dark Channel Prior follows a similar approach to the lower 
border in sRGB, by restoring colors to achieve a zero value in at least one of its channels [He et al. 
2011]. Due to the modification of CIELab, by representing a unit ball, every single border color has a 
radius=1 with: 

𝐽 = 𝐽h\ + 𝐽5\ + 𝐽i\ = 1 

With this information, it is possible to transform Koschmieder’s equation towards an alternate ball 
equation 

𝑡\ = 𝐼h − 1 − 𝑡 𝐴h \ + 𝐼5 − 1 − 𝑡 𝐴5 \ + 𝐼i − 1 − 𝑡 𝐴i \ 

in which the transmission 𝑡 is the only unknown variable. Therefore, the problem is solvable by 
reducing it to a quadratic equation: 

𝑡\ 𝐴𝐴j − 1 + 2𝑡 𝐼𝐴j − 𝐴𝐴j + 𝐼 − 𝐴 𝐴 − 𝐴
j

= 0 

Finally, using the well-known “abc formula” determinates, the value of 𝑡, where 𝑡 has to be a positive 
value: 

𝑎𝑡\ + 2𝑏𝑡 + 𝑐 = 0 → 	 𝑡[,\ =
−𝑏 ± 𝑏\ − 𝑎𝑐

𝑎
 

As this calculated transmission will cause every color to settle at the CIELab border, the transmission 
𝑡 has to be refined. Otherwise the resulting image will have over-saturated colors. The current 
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implementation of JEnhancer takes a power smaller than one from 𝑡, to fulfill a higher alternation to 
median values and almost no change to values near 𝑡 = 0 and 𝑡 = 1. Actually, this power is set to 0.95, 
but can be adjusted to fulfill application-based needs. An alternative way of refinement is possible as 
long as the transmission gets a higher value than calculated. 

Afterwards, the restoring process firstly subtracts the influence of the estimated water color which 
results in the weakened origin image 𝐽|: 

𝑡𝐽 = 𝐼 − 1 − 𝑡 𝐴 = 𝐽| 

Remembering the nature of CIELab, the weakened image has at this moment its characteristic colors, 
because the division of 𝑡, according to 𝐽 = 𝐽| 𝑡, only alters the color’s luminance and saturation, but 
not the degree. Therefore, this step enhances the contrast of the final image. Once more the 
transmission has to be refined, due to the fact that the sRGB gamut is a sub space within CIELab and 
the regular output will use sRGB, e.g. JPEG. The current implementation of JEnhancer uses the third 
root of 𝑡, but as above, different solutions are possible to adjust the transmission for the contrast 
enhancement step. To show the two major steps of the enhancement process, three examples are 
shown in Figs. 15-17 (see Appendix). 

Our image enhancement method has been implemented in the software JEnhancer which we 
provide free for research purposes. The current version of the software, along with installation and 
usage instructions, is available from our project page13. 

4. EXPERIMENTS AND INTERIM RESULTS 
JEnhancer was successfully used in several campaigns in Kamenz/Germany, Zwischenahner 
Meer/Germany, Veruda/Croatia [Scholz et al. 2016] and Mondsee/Austria [Block et al. 2016, Pile 
Dwellings], since February 2016. JEnhancer is not only used to improve images in the sense of color 
restoration, it is also used to improve an image, so that a feature detector will be able to detect more 
significant features for SfM-based 3d reconstruction.  

Out of the past campaigns and experience gained, we first want to show the influence JEnhancer 
has on the input images. After that, we want to compare some suitable image sets and the different 
outcomes of Photoshop and JEnhancer, and finally show some unsuitable image sets. 

 Feature enrichment experiment 
The method we have presented here has the advantages of improving underwater images 
automatically and of involving all images in the process. Beside the color correction for the overall 
3d model, one aim of the image enhancement process is to increase the potential number of detected 
features for SfM reconstruction. When using small images with blurry content, feature detection 
often fails or detects insufficient numbers of features, so that image correlations cannot be found. 

To compare the outcomes of Photoshop and JEnhancer according to the number of detected features 
and the produced 3d models, a challenging image set of the campaign in Mondsee/Austria was 

                                                        
13 http://www.archaeonautic.de 



Automatic Underwater Image Enhancement          1:579 
 
 

 
 

Studies in Digital Heritage, Vol. 1, No. 2, Publication date: December 2017 

selected. The videos of three parallel cameras starting with a camera to bottom distance of about 3 
meters and and increasing to a distance of up to six meters were used. The images at the end of the 
videos are too blurry to detect any serious data for the 3d reconstruction process. The challenge is 
now to combine as many images as possible in the pose estimation step. 

As an experimental image set, we used 1560 images, extracted from a GoPro Hero 4 BE video with a 
resolution of about 1980×1080 pixels, taken at Mondsee/Austria in 2016 [Block et al. 2016, Pile 
Dwellings]. To optimize the output of VisualSFM14, we reduced the image size to 1600×900 pixels. This 
set M1 represents the original data set Then, set M2 represents the results of Photoshop’s automatic 
color correction and M3 the results of JEnhancer. To all sets M1, M2, and M3, SiftGPU [Wu 2007] with 
pre-trained parameters was applied. The images are sorted by number of features found in M1. To 
give an idea about image quality, three different examples are selected (Fig. 10). 
 

   

   

   

Figure 10. The top row shows the original data, taken by the GoPro Hero 4 BE with 1080p, and the second row 
shows the same images enhanced with Photoshop’s automatic color correction. The third row shows the 
results of JEnhancer. The number of detected features with SiftGPU is shown inside every image. The first 
column shows the best image out of the 1560 images. The second column shows an intermediate image out 
of the middle of the data set. The third and last column shows the worst image. 

                                                        
14 http://ccwu.me/vsfm/doc.html 
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Figure 11. All 1560 images are plotted along the x (horizontal) axis. The yellow graph shows the number of 
features, found by SiftGPU with pretrained parameters in the original data set M1. The red graph shows the 
features detected in the improved version of the images in set M2 using Photoshop and the orange graph the 
number of features detected using JEnhancer. The sum of all features in M1 is 1333287, in M2 7276192, and 
in M3 6632938. The mean value in M1 is around 855 features per image, in M2 around 4664 and in M3 around 
4251. 

The diagram in Fig. 11 shows the number of features extracted from the original data (yellow plot), 
the images improved by Photoshop (red plot), and the image data improved by JEnhancer (orange 
plot). 
 

 
a) 

 
b) 

Figure 12. One selected part of the resulting 3d model using CMPMVS where results of Photoshop (a) and 
results of JEnhancer (b) were used. JEnhancer is closer to the muddy underground situation and produces 
more realistic results. 

Thus, the sum of features detected in all images using JEnhancer was amplified by a factor of 5 and 
via Photoshop by a factor of 5.4. A sufficient number of features is important to find the right 
correlations between images. The pose estimation using VisualSFM delivers for the original image 
data set M1 one connected model (50659 3d points) with 350 images, for M2 one model (238542 3d 
points) with 528 images and for M3 one model (187041 3d points) with 514 images. On the one hand, 
both Photoshop and JEnhancer are able to improve images to identify more points and finally more 
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correlations. On the other hand, the quality of the resulting 3d models depends strongly on the quality 
of the input images.  

If lighting and seen color space are more or less equal, Photoshop’s results are quite useful (as seen 
in Section 2.4). These properties are present in some parts of the selected image set. The main 
difference between Photoshop and JEnhancer is the transformed color space. Whereas Photoshop 
only samples the original colors to enhance the color space and increases the contrast in comparison 
to the original images, JEnhancer analyses the water color and eliminates it, as seen in Fig. 12. 

The main difference, between Photoshop and JEnhancer takes effect when lighting and seen color 
space are diverging. Here, we produce visual artefacts and inconsistences in parts of the 3d model as 
seen in Fig. 13. 
 

 
a) 

 
b) 

Figure 13. a) improving images independently (Photoshop) sometimes may lead to visual artefacts, when 
differences in lighting and seen color space occurs; b) JEnhancer produces results with homogenous color 
spectrum. 

The results indicate, that Photoshop’s outcome can be used to find more correlations between 
images, and later JEnhancer’s outcome can be used to better texturize the model.  

 Examples of suitable image sets 
Since February 2016, JEnhancer is an essential component of the 3d reconstruction pipeline 
Archaeo3D. To compare the outputs of JEnhancer and Photoshop, Fig. 15 (see Appendix) shows some 
suitable examples. 

Whereas Photoshop only improves the histograms and therefore increases the contrast and hue, 
JEnhancer corrects the image according to the estimated water color. Both methods increase the 
number of detected features in most cases, because feature extraction depends strongly on image 
sharpness and structure.  

 Examples of unsuitable image sets 
As discussed in Section 3.2, not all scenarios or image sets are suitable for enhancement by 
JEnhancer. If the assumption of an unobstructed field of view to detect the water color does not hold, 
the quality of the resulting images will be poor, with wrongly compensated colors (Fig. 14). 
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Figure 14. This image was taken in a pool in Radebeul/Germany. The assumption of the presence of the water 
color fails here. The result of Photoshop in the middle is close to the real scene while JEnhancer estimates blue 
as the water color and corrects the axis in a way that turns the water color to gray. 

If JEnhancer is used to improve an image set, it is recommending taking some images with an 
unobstructed field of view. This is important to be able to fulfill the assumption that the water color 
is clearly seen in a minimum of one image. 

5. CONCLUSIONS AND FUTURE WORK 
This paper presented the first freely available (for research purposes) software tool for automatic 
enhancement of underwater image sets using Improved Dark Channel Prior. Experiments have 
shown that JEnhancer can significantly increase the number of detected features in an SfM 
processing chain, which is of crucial importance for constructing complete 3d models when 
extremely blurry images are used. In one experiment with 1560 images, the sum of features was 
amplified by a factor of 5 in comparison to non-enhanced images using JEnhancer and by factor 5.4 
using Photoshop. The results indicate, that Photoshop’s outcome can be used to find more 
correlations between images, and later JEnhancer’s outcome can be used to better texturize the 
model.  

The module JEnhancer is one more useful piece in the 3d reconstruction pipeline Archaeo3D. The 
decision to offer it as free software for research purposes, is in alignment with the project’s 
philosophy. After a software refactoring step, we plan to release it as an open source project to invite 
more people to work on it. Beside improving the software, we are collecting different image sets for 
benchmarking and developing an automatic evaluation process for comparing different approaches. 
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APPENDIX 

 

Figure 15. The number of detected features (using SiftGPU) is shown inside every image. The first column 
shows four selected examples of Kamenz/Germany, Surin Islands/Thailand, Mondsee/Austria and 
Veruda/Croatia, beginning at the top. The second column shows the results of the automatic image 
enhancement using Photoshop and the third the results of JEnhancer. At the bottom of every image, the count 
of detected features is shown. 
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Figure 16. This image was taken in a pool in Kamenz/Germany. The first row shows the original image and the 
corresponding histogram taken by a GoPro Hero 4 BE with 1080p. The second row shows the result after 
subtraction of the estimated water color and the third after increasing the contrast. 
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Figure 17. This image was taken in Surin Islands/Thailand by André Knuth. The first row shows the original 
image and the corresponding histogram taken by a GoPro Hero 4 BE with 1080p. The second row shows the 
result after subtraction of the estimated water color and the third after increasing the contrast. 
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Figure 18. This image was taken in Veruda/Croatia. The first row shows the original image and the 
corresponding histogram taken by a GoPro Hero 4 BE with 1080p. The second row shows the result after 
subtraction of the estimated water color and the third after increasing the contrast. 
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