
Supplemental Documentation for Reviewers 
 
This documentation is taken directly from a website that is referred to in the Appendix of 
the submitted article. In order to comply with the blind peer-review guidelines, we have 
removed the website link from the paper and included the information here instead.  
 
Contents: 
 
Quantum tunneling supplementary materials 
 
1-7: Quantum Tunneling Overview 
 
9-15: Introductory quantum tunneling tutorial (no-sim-assignment) 
 
17-21: Introductory quantum tunneling tutorial (sim-assignment) 
 
23-30: Advanced quantum tunneling tutorial (re-designed assignment with simulation) 
 
Build-a-molecule supplementary materials 
 
31-32: Build-a-molecule assignment 
 
33-38: Pre-test and post-test results for build-a-molecule activity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 



Quantum Tunneling Overview

Introduction

At the heart of quantum mechanics is the idea that matter behaves as both a wave
and a particle. Experimental evidence from approximately 1900 through present
day shows that as we look more closely at the behavior of very small things, such
as molecules, atoms, and fundamental particles, the intuitive classical predictions of
how matter should behave are not adequate in predicting the results of experiments.
Perhaps the most fundamental reason for this is that these small particles were cla-
sically treated as point-like objects whose position and momentum can be predicted
with absolute certainty. It was not until the leading physicists of the early 20th cen-
tury started toying with the idea that these very small objects may behave as waves
at certain times and particles other times that they began predicting the results of
experiments.

One of the interesting findings of quantum mechanics is that, due to the wave-like
nature of matter, small particles can be found in places that would classically be
forbidden. This phenomenon is called “quantum tunneling”, and it has allowed for
new technologies to be developed throughout the 20th century. Such applications are:
the scanning-tunneling microscope, tunneling diodes, tunneling field-e�ect transistors,
and the understanding of radioactive decay (which, for example, powers any nuclear
power plant). This phenomenon not only demonstrates the ‘strangeness’ of quantum
mechanics, but also plays a fundamental role in society, and is therefore an important
subject in any quantum mechanics course. In the rest of this paper, we describe in
greater detail what tunneling is, and how it can be treated mathematically.

Basics of Quantum Mechanics

Energy barriers are ubiquitous in physics. A skate board ramp, an electronic circuit
element, a material’s emission properties, and much more, can be described with the
concept of an energy barrier. For example, a skateboard ramp provides a gravitational
energy barrier for the skater, such that while the skater is on the ramp, his/her energy
is constrained by the ramp. Similarly, a circuit element can provide an energy barrier
for electrons, such that only electrons with a certain energy may cross the circuit
element.

Quantum tunneling is a problem that involves an energy barrier. Specifically, this
barrier tells us about how a quantum particle (such as an electron or proton or small
molecule), can be spatially and temporally located within a region of space. One
barrier to consider is the one shown in Figure 1. In this figure, three ‘regions’ exist
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in one dimension of space (imagine a very small wire, separated by another wire a
distance L away from each other).

Figure 1: Energy Barrier for a Quantum Particle

In considering how the particle behaves near this barrier, we use the most funda-
mental equation in quantum mechanics: the Schrödinger equation. The Schrödinger
equation describes a quantum particle’s ‘wave function’, analagous to how Maxwell’s
equations describe electric and magnetic fields.

� ~2
2m

⇥2

⇥x2
�(x) + V (x)�(x) = E�(x) (1)

In the Schrödinger equation, ~ is a constant, m is the mass of the particle under
consideration, V (x) is the energy barrier that the particle will see, E is the energy of
the particle, and �(x) is the wave function of the particle. The wave function is really
what we want to figure out from this equation. If we know the mass of the particle,
the energy of the particle, and the energy barrier that the particle will encounter, we
can solve for �(x), and find what we are looking for. Once we know �(x), we can
calculate many other properties, and essentially know ‘everything’ there is to know
about the system.

Physically, the wave function tells us something about the probability of finding
the particle in di�erent locations of space. We know that the particle must be located
somewhere in space, and this can be represented in the following way:

� +⇥

�⇥
|�(x)|2 dx = 1 (2)

This equation states that by taking the absolute value of the wave function, squar-
ing it, and summing that quantity over all space (or in this case, over an infinitely

2



long one-dimensional line), we should find that quantity to be exactly equal to 1. In
other words, because the square of the wave function tells us the probability of finding
a particle within a given region of space, if we look for the particle in the entirety of
space, our probability of finding it is 100%. On the face of it, this equation might
not seem to tell us much. However, this property is frequently exploited in quantum
mechanics. Since we can never know the position of a particle with 100% accuracy, we
are forced to use this relationship and say that the particle will certainly be located
somewhere in a select region of space.

Basics of Tunneling

In studying quantum tunneling, we can solve the Schrödinger equation for the energy
barrier shown in Figure 1. We know the energy of the barrier throughout all space
(V (x)), we can pick an energy (E) for the particle, and we can assume that the
particle has some mass that is known (m). With all of this, we can solve for �(x) in
each of the three regions.

For Region I and III, V (x) = 0, while in Region II, V (x) is a constant value (we
will call it V0). Mathematically, this is written:

V (x) =

�
0, for x < 0 and x > L

V0, for 0 � x � L
(3)

At this point, we need to know the energy of the electron (E). There are really
three choices for the energy that we care about: the case of E > V0, the case of
E = V0, and the case of E < V0.1 The case of E = 0 is one that the tutorial does not
cover, so we do not consider it here.

In the case of both E > V0 and E < V0, we first solve for �(x) in each of the three
regions separately. The Schrödinger equation is a second-order equation, so every
time we solve it, we will have 2 unknown quantities. We have to solve this equation
for three di�erent regions in space, so we should expect to have 6 unknown quantities,
for which, we will need boundary conditions to pin down. We can start figuring out
the boundary conditions by think about two constraints on the wave function. The
first of these is: �(x = 0)R1 = �(x = 0)R2 and �(x = L)R2 = �(x = L)R3, meaning
that the wave function must be continuous across the two boundaries (so that there
can be no discontinuities in �(x). The second constraint is that the slope of the wave
function across these boundaries must also be the same: �(x = 0)R1 = �(x = 0)R2

1Also note that E can never be less than 0, since in such a case, there is no solution to the
Schrödinger equation. We assume that E > 0 for this problem.
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and ⌅⇥(x = L)R2 = ⌅⇥(x = L)R3.2 These two conditions provide ‘boundary conditions’
for solving the Schrödinger equation given in (1).

In the case of both E > V0 and E < V0, the solutions for ⌅(x) take the same form
in Region I and Region III. We skip over the details of solving this, and simply write
them here:

⌅R1(x) = Aeikx + Be�ikx (4)

⌅R3(x) = Feikx +Ge�ikx (5)

where k =
�

2mE/~2, and we give di�erent amplitudes (A, B, F and G) for
the two regions to indicate that the amplitudes may be di�erent across the di�erent
regions. Note that these solutions are just sine waves, with one sine wave (the +ikx
term) traveling towards positive x and the other (the �ikx term) traveling towards
negative x. A sum of sine waves simply adds to another sine wave, so the wave
function in both Region I and Region III looks like a sinusoidal wave.

If we consider the case of E > V0, the solution to the Schrödinger equation in
Region II takes the same form as (4), but the constant k is slightly di�erent. We can
write this solution as:

⌅R2(x) = Ceik2x +De�ik2x (6)

where k2 =
�
2m(E � V0)/~2. The di�erence between k2 and k is important,

because it tells us something about how the wavelengths in Region I and III compare
to the wavelength in region II. Recall that k = 2⇤/⇥, where ⇥ is the wavelength of
the sine wave. Because k2 < k, we should expect that ⇥2 > ⇥. Therefore the wave
function has a larger wavelength in Region II, so the solution looks slightly di�erent.

In the case of E < V0, the solution to the Schrödinger equation in Region II no
longer looks like a sine wave. The reason for this is that because V0 is larger than E,
the only acceptable solution in that region takes the form of real exponentials. Thus,
we can write the solution in Region II for E < V0 as:

⌅R2(x) = Ce�x +De��x (7)

where � =
�

2m(V0 � E)/~2. Here, we have a term with exponential decay in x
added to a term with exponential increase in x.

At this point, we have solved the solutions to Schrödinger’s equation in all of the
three regions for the case of E > V0 and the case of E < V0. Here, we summarize our
solutions:

2These two constraints are postulates of quantum mechanics; there is really no other way to
explain why we use this.
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For E > V0:

�(x) =

�
⌅⇤

⌅⇥

Aeikx + Be�ikx, for x < 0

Ceik2x +De�ik2x, for 0 ⇥ x ⇥ L

Feikx +Ge�ikx, for x > L

(8)

For E < V0:

�(x) =

�
⌅⇤

⌅⇥

Aeikx + Be�ikx, for x < 0

Ce�x +De��x, for 0 ⇥ x ⇥ L

Feikx +Ge�ikx, for x > L

(9)

As is the process with solving any di�erential equation, after solving for the general
solutions (as we have now done), we must plug in boundary conditions to solve for
the unknown quantities. In our situation, we now have 6 unknown quantities (A,
B, C, D, F , and G) for both cases of E.3 So far, we have discussed four boundary
conditions: the condition that �(x) must be continuous at both x = 0 and x = L
(this gives us two), and the fact that �⇥(x) must be continuous at both x = 0 and
x = L. However, we have 6 unknown quantities, so it seems we need 2 more boundary
conditions.

To determine the remaining boundary conditions, we must refer to the physical
situation that we are dealing with. We are interested in a particle approaching the
barrier from either the left side (Region I, moving in the direction of +x) or a particle
approaching from the right side (Region III, moving in the direction of -x).

In the first case, we can consider what happens to the particle as it approaches
the energy barrier. Starting with the change in V (x) at x = 0, we can have some
transmission of the wave function, as well as some reflection of the wave function.
Recall that the top equation in (8) and (9) describes the sum of a right-going wave
(corresponding to the coe⇥cient A) and a left-going wave (corresponding to B). By
saying that the wave is coming from Region I, we are essentially saying that at
x ⇤ �⌅, we are setting the amplitude of A at some constant value. On the other
hand, if we were talking about case 2 (the left-going wave), we would be saying that
at distance x ⇤ +⌅, we are fixing G to be a constant value. Therefore, by giving
information about where the particle is coming from, we have provided ourselves one
more boundary condition, and know everything there is to know about A or G.4

If we continue to consider the first case of the wave approaching from Region I,
the barrier at x = 0 can allow for some reflection of the wave, and some transmission

3Note that by unknowns, we are not referring to the energy (E), mass (m), or potential (V (x)),
nor anything that depends on those quantities (such as k, k2, or �). We assume that those quantities
are chosen for our given physical situation, and that we now want to watch what happens.

4It may seem strange to say that A or G is now known, when we haven’t set A or G equal to
some quantity. But remember that A and G are just constants; we could arbitrarily rename them
something else, but it won’t make a di�erence in our calculation at this point.
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of the wave. The transmitted wave can then continue to the barrier at x = L, and
some of it can be transmitted and some can be reflected back.5 For the wave that
is transmitted to Region III, we can now follow the wave along its path towards
x � +⇥. This wave never encounters a barrier, and because of this, we can say that
there is no reflected wave in this region. Since there is no reflected wave, we know
that G in (8) must be 0 (remember that x and k are non-zero, so the only way to
get rid of this term altogether is to eliminate G). If we were looking at the case of
the wave approaching from the right, we could apply the exact same reasoning and
decide that A � 0, since the left-going wave in Region I never encounters a barrier
to reflect o� of.

Let us now summarize what the wave function should look like for these di�erent
cases:

For E > V0, assume the wave is traveling towards the right. In Region I, we have
a sine wave that will be both reflected and transmitted. In Region II, we have another
sine wave (this time with a larger wavelength), which will be both transmitted and
reflected. In Region III, we have another sine wave with the same wavelength as in
Region I, but with no reflection.

For E < V0, again assume the wave travels towards the right. Region I looks
qualitatively the same as it did for the case of E > V0. In Region II, the solution
becomes a sum of real exponentials, which is dominated by the exponential decay
term. Therefore, the wave function is “dying o�” in Region II. This means that in
Region III, though the wave function again appears sinusoidal, the amplitude in this
region is smaller than in Region I.

Also note that this solution to the wave function is not physically real, since it
is not normalized. That is to say that we can not integrage the probability density
over all space and come up with a value that is anything but infinite. (Imagine trying
to integrate a sin2(x) function over all space. The area under the curve is infinite.)
To make this physically real, we would have to use many di�erent solutions to this
problem (i.e. many energy values) so that we could sum those di�erent solutions
into a wave ‘packet’, which can be normalized. The reason we use this non-physical
situation is because it is simpler and still gives a great deal physical intition into the
nature of tunneling.

5It is common to worry about the reflected wave in Region II going back and transmitting back
into Region I, and even worse, some of it bouncing back and forth inside the barrier until it decides
to leave at some random time. It might seem like we can’t say exactly where the reflected and
transmitted waves are going to go for all times. Fortunately, we don’t have to worry about this,
since the four boundary conditions mentioned earlier take care of this automatically by forcing �(x)
and �0(x) to be continuous at x = 0 and L.
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Name:__________________________________ Student ID:__________________________ 

Tutorial: Quantum Tunneling 

PART A: CLASSICAL PARTICLE 

A ball of mass m rolls to the 
right on a flat, frictionless 
surface with total energy E = 
3mgh. The ball soon 
encounters a sloped surface 
and rolls up to height 2h. 
After, the ball rolls back 
down the ramp, always staying in contact with the surface.  

1) Is the total energy of the ball as it rolls from 0 to 3L increasing, decreasing, 
or staying the same? 

 

 
2) Sketch the kinetic energy, gravitational potential energy, and total energy of 

the ball between 0 and 3L. Scale your graph with multiples of mgh. 

 

 

 
3) Is the amount of time the ball spends between L and 2L greater than, less 

than, or equal to the amount of time it spends between 0 and L? How does it 
compare to the amount of time it spends between 2L and 3L? (Ignore the 
time the ball spends on the ramp.) 

 

 

 
4) Now imagine that we take a photograph of the ball at some random time. Is 

the probability of finding the ball between 0 and L greater than, less than or 
equal to the probability of finding it between L and 2L? Why? 
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Name:__________________________________ Student ID:__________________________ 

 
PART B: SOLUTIONS TO SCHRÖDINGER’S EQUATION 
 
The time-independent Schrödinger equation is given by: 
 

2 2

2 ( ) ( ) ( ) ( )
2 TOT

d x V x x E x
m dx

! ! !
"

+ =
!

 

 
 
This can be rewritten as: 
 

( ) ( )
2

2 2 2

2 2d m m
E V V E

dx
!

! != " " = "! !  

 
 
1) If E < V, will the solutions to Schrödinger’s equation be real exponentials or 
complex exponentials? [Hint: Is the quantity on the right-hand side positive or 
negative in this case?] 
 
 
 
 
2) Write down the most general solution to Schrödinger’s equation for the case 
when E < V. 
 
 
 
 
3) If E > V, will the solutions to Schrödinger’s equation be real exponentials or 
complex exponentials? [Again, consider whether the right-hand side is positive or 
negative.] 
 
 
 
 
4) Write down the most general solution to Schrödinger’s equation for the case 
when E > V. 
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Name:__________________________________ Student ID:__________________________ 

PART C: ELECTRON IN A WIRE (E  > V0) 
 
Consider an electron with total energy E moving to the right through a very long 
smooth copper wire with a small air gap in the middle: 
 

 
 
Assume that the work function of the wire is V0 and that V = 0 inside the wire. 
 
1) If E > V0, draw a graph of the electron’s potential energy in all three regions.  
Also draw a dashed line indicating the total energy of the electron. 
 
 
 
 
 
 
 
2) In each of the three regions, are the solutions to Schrödinger’s equation real 
exponentials or complex exponentials?  Write down a solution for each of the three 
regions corresponding to an electron traveling to the right. 
 
 
Region I: 
 
 
 
Region II: 
 
 
 
Region III: 
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Name:__________________________________ Student ID:__________________________ 

3) How does the kinetic energy of the electron compare in each of the three 
regions?  Rank the kinetic energies in the three regions (KE1, KE2 & KE3) from 
high to low. 
 
 
 
 
 
 
 
4) How does the deBroglie wavelength of the electron compare in each of the three 
regions?  Rank the wavelengths in the three regions (!1, !2, !3) from largest to 
smallest.  If the wavelength is not defined in a particular region, then say so. 
 
 
 
 
 
 
5) How does the amplitude of the electron’s wave function compare in each of the 
three regions? [Hint: think about |!(x)|2 what tells you in terms of probabilities]. 
 
 
 
 
 
6) With this information in mind, sketch the real part of the electron’s wave 
function in all three regions: 

 
 

12



Name:__________________________________ Student ID:__________________________ 

PART D: ELECTRON IN A WIRE (E  < V) 
 
Consider the same situation as in Part C, but now the total energy E of the 
electron is less than the work function V0. 
 
1) If E < V0, draw a graph of the electron’s potential energy in all three regions.  
Also draw a dashed line indicating the total energy of the electron. 
 
 
 
 
 
 
 
2) In each of the three regions, are the solutions to Schrödinger’s equation real 
exponentials or complex exponentials?  Write down a solution for each of the three 
regions corresponding to an electron traveling to the right. 
 
 
Region I: 
 
 
 
Region II: 
 
 
 
Region III: 
 
 
 
 
 
3) How does the kinetic energy of the electron compare in each of the three 
regions?  Rank the kinetic energies in the three regions (KE1, KE2 & KE3) from 
high to low. 
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Name:__________________________________ Student ID:__________________________ 

4) How does the deBroglie wavelength of the electron compare in each of the three 
regions?  Rank the wavelengths in the three regions (!1, !2, !3) from largest to 
smallest.  If the wavelength is not defined in a particular region, then say so. 
 
 
 
 
 
 
 

5) How does the amplitude of the electron’s wave function compare in each of the 
three regions? [Hint: think about |!(x)|2 what tells you in terms of probabilities].  
Explain what physical meaning we can make from the shape of the wave function 
in Region II.  
 
 
 
 
 
 
 
 
 
6) With this information in mind, sketch the real part of the wave function for this 
electron: 
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Name:__________________________________ Student ID:__________________________ 

7) Using the solution to #6, what conclusions can you make about the possible 
position of the particle? How is this different than a classical particle in the same 
situation? Can you offer an explanation of why classical objects (people) don't 
exhibit the same property, called tunneling? 

15
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PHYS 3220 PhET Quantum Tunneling Tutorial

Part I: Mathematical Introduction

Recall that the Schrödinger Equation is i~��(x,t)
�t = Ĥ�(x, t) . Usually this is solved by first

assuming that �(x, t) = ⇥(x)�(t), from which we obtain the solution �(t) = e�iEt/~ and are
left with the following equation to solve for the spatial dependence:

d2⇥

dx2
= �2m

~2
(E � V (x))⇥

1. Consider a potential region such as the one shown in the figure below. Given that E > V0, write
down a general solution of the Schrödinger Equation for each region. Define any constants
that will simplify your solution.

2. How many boundary conditions are needed to completely specify this situation?

1
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3. If a right-going plane wave with amplitude A originating from x! �1 is incident upon the
barrier, what simplifications can be made in your above equations? Which of your unspecified
constants (if any) are now specified completely?

4. What are the remaining boundary conditions for this system? (A simple mathematical for-
mula or explanation in words are both acceptable.)

5. Using this information, do your best to make a plot of the wave function for the case of
E > V0.

2
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6. In the graph that you just drew, did you account for the wavelength and amplitude di�erences
in the three regions? (Don’t change your graph, just think about it!)

(a) Rank the magnitude of the wavelengths for the three regions.

(b) How do you expect the amplitude to compare across the three regions? Give a brief
qualitative explanation.

3
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Part II: Plane Wave of E > V0 using PhET sim

Download the Tunneling PhET sim, found at: http://phet.colorado.edu/sims/quantum-tunneling/
quantum-tunneling_en.jar. Play with the sim for a bit, and then switch to “Plane Wave” mode
to answer the following questions.

Notice: For this tutorial, you may find it very useful to switch between using the
“Separate” and “Sum” representations on the sim!!!

1. Comparing your findings in Part I to the sim:

(a) What are the main di�erences between your plot of the wave function and what is shown?

(b) Do your predictions for wavelength and amplitude agree with what you see? If not, why
were your predictions wrong?

2. You should be able to see the wave function in Region 1 bob up and down.

(a) What causes this? (You might find the ‘Notice’ at the top of the page helpful!)

4
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(b) List all parameters that you can adjust to eliminate this “bobbiness.” Is there only one
way to do this, or are there several di�erent ways?

3. Play with the sim and maximize the amount of transmission to Region 3.

(a) What parameters a�ect the amount of transmission in this region? List them all. Again,
is there only one way to maximize the amount of transmission, or are there multiple
ways?

(b) How does the case of maximum transmission compare to “eliminating the bobbiness” in
region 1? Give a brief qualitative explanation of why this is the case.

(c) Often times the probability of transmission is denoted by the variable T, and takes the

following form:

T =
1

1 + V0 sin2(k2L)
4E(E�V0)

According to this equation, what condition must be satisfied for maximum transmission
to occur?

5
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(d) How many variables does the Transmission probability depend on (don’t forget to think
about what k2 depends on)? Does this account for everything you found in 3a?

4. Is there any way to set up the sim such that there is a time-dependence in the probability

density? Use the fact that �region j = Ajei(kjx��jt)+Bje�i(kjx+�jt)to justify your answer.

5. (a) Based on your result from 4, which regions can show sinusoidal probability densities in
the spatial dependence?

(b) Is there any way to make Region 3 have a sinusoidal probability density?

(c) Under what conditions can you have a sinusoidal probability density?

6
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Part III: Case of E < V0

1. For the case of E < V0, write down the most general solutions to the Schrödinger Equation
for each of the three regions. Define any constants that help simplify your answers.

2. This time, assume that a left-going plane wave with fixed amplitude originating from x� +⇥
is incident upon the barrier. Which variables are now “fixed” or completely specified? List
the remaining boundary conditions using a simple mathematical expression.

3. Do your best to plot �(x) vs. x across all three regions.

7
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Using the sim for E < V0

1. What parameters can you adjust to maximize the amount of transmission to Region 1 in the
sim? List all of the possible ways.

2. (a) When E < V0, is there any way to completely eliminate the reflected wave in Region 3?

(b) Assuming that the potential barrier, V0, has some finite width, is there any way to get
100% transmission in this case? Why is this the case?

3. Looking at the wave function in the potential barrier, is there any similarity to the case of
E > V0, where there was a reflected wave and a transmitted wave? Is the full wave function
a sum of solutions or just one particular solution?

8
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 N N % 
2a Correct 33 57% 

Name, not Symbols 14 24% 
other 10 17% 
N/A 1 2% 
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2b Correct 37 64% 

Name, not Symbols 14 24% 
other 7 12% 
N/A 0 0% 

33



!" #

#

##

#

$"#   

#

%"#

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

 N N % 
2c Correct 29 50% 

Name, not Symbols 0 0% 
other 24 41% 
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Name, not Symbols 15 26% 
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Other 10 17% 
N/A 5 9% 
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Molecular Formula, no coefficient 3 5% 
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Molecular Formula, no coefficient 5 9% 
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