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Abstract: The purpose of this article is to offer insights into current understanding 
of digital learning environments (DLEs) from a neuroscientific perspective. 
Cognitive neuroscience methods are increasingly applied in educational research 
to examine the neural underpinnings of learning. As such, neuroscientific evidence 
can play an important role in advancing current knowledge base from the existing 
self-reported data and behavioural measures in the field of educational technology. 
In this paper, we focus our review of neuroscience research on DLEs that can 
potentially transform the way we view learning and instruction. We discuss recent 
empirical studies done on DLEs using common cognitive neuroscience methods 
which included eye tracking, electroencephalography (EEG), and functional 
magnetic resonance imaging (fMRI). We offer recommendations for future 
applications of neuroscience methods in behavioural research within DLEs. 
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Introduction 

Educational technologies are emerging as an important instructional means to facilitate student 
engagement and self-directed learning in universities (O’Flaherty & Phillips, 2015). For instance, 
traditional teaching has been combined with digital learning environments (DLEs) to offer new 
opportunities for student-centered learning and to facilitate students’ knowledge construction. 
Such a form of blended learning is becoming commonplace in universities and constantly 
undergoing design changes to adapt to varied higher institution learning settings (O’Flaherty & 
Phillips, 2015). Existing research studies in higher education have shown that students are more 
likely to engage when they learn using DLEs (Bryson & Hand, 2007; Hockings, Cooke, Yamashita, 
McGinty, & Bowl, 2008). However, the understanding of how students actually learn and engage 
in DLEs is less informed.  

Recently, there has been increased research attention on addressing issues of learning and 
instruction using neuroscience methods and behavioural approaches. One key area of learning 
explored using the neuroscientific approach, is on the learners’ cognitive processes during reading 
and learning (Grabner et al., 2009; Yoncheva et al., 2010). Functional neuroimaging techniques, 
such as fMRI, detect increased blood flow that is thought to be coupled to increased neuronal 
activation during a cognitive process, and measure a learner’s neuronal activity based on a given 
task (e.g., Prat & Just, 2011). Current fMRI studies explore cognitive activities of undergraduates 
in reading and comprehension (e.g., Henderson, Choi, Lowder, & Ferreira, 2016). The application 
of neuroscience methods in educational research potentially allows researchers to study student 
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engagement level such as how students actually perform and engage in online learning tasks 
(Ansari & Coch, 2006). Together with behavioural measures, neuroscientific data may therefore 
provide important evidence of students’ deep engagement levels of learning during an online 
activity. This paper aims to examine how cognitive neuroscience methods are used with 
behavioural measures to inform evidence-based research in the field of educational technology. 
This review paper provides a focused theme on some current advances and perspectives on the 
application of cognitive neuroscience to understand student learning in DLEs at university level.  

Digital Learning Environment 

The emphasis of self-directed learning in universities is fundamental to Knowles’ (1970) view of 
developing an environment that is conducive to individual orientation to learning and needs. In 
light of this, the seamless integration of technology into instruction and learning has offered 
potential powerful DLEs to facilitate and advance individual learning through inquiry and 
collaboration. Rapid technological developments have also resulted in extensive research on the 
implementation of information and communication technologies (ICT) as well as digital tools in 
schools and higher learning institutions (Säljö, 2010). For example, DLE is a key technological 
development that has been widely researched. Broadly, DLEs can be defined as the use of 
technology to support student learning, teaching and studying activities (Anderson, Love, & Tsai, 
2014). The model of learning in DLEs is consistent with that in the learner-centred and the 
constructivist model, and both emphasize the construction of knowledge. Common examples of 
DLEs include computer-supported learning, mobile learning and multimedia learning with 
representations such as text, graphic, video and animation to enhance student learning (Anderson 
et al., 2014; Chang & Linn, 2013). In this paper, DLE also includes an e-learning platform, web-
based and multimedia instruction. 

DLEs are an increasingly important mode of instructional delivery in higher education as 
a means to promote personalized and engaging learning experiences (Dahlstrom & Bichsel, 2014). 
The availability of broadband access affords many courses the opportunity to be taught online, and 
universities are increasingly turning to the use of DLEs to promote online learning. This is evident 
in at least two DLEs: Learning Management System (LMS) and Massive Open Online Courses 
(MOOCs). The LMS is not only a widely used administrative system for course management, but 
it also functions as a DLE. For example, online teaching and distance education are delivered 
through the LMS to provide students with a personalized and engaging experience (Dahlstrom & 
Bichsel, 2014; Dahlstrom, Brooks, & Bichsel, 2014). MOOCs are low fee or free web-based 
instructional modules offered by universities or educational institutions (e.g., Coursera). MOOCs 
can have a very high enrolment; however, the level of learner engagement in the DLE is often less 
encouraging (Dahlstrom & Bichsel, 2014). Success factors for DLEs have been mainly attributed 
to student learning satisfaction, personal traits and attitudes (Stokes, 2001). Recent research, 
however, suggests that cognitive neuroscience can further our understanding of how and why 
students learn in DLEs. For instance, a learner’s brain areas that are activated during an online task 
can be tracked using neuroscience methods. 

Neuroscience and Education 

Cognitive science with learning, coupled with neuroscience methodologies have created a new 
domain in educational studies, that is, cognitive neuroscience. Cognitive neuroscience has been 
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extensively studied in the area of psychology research (Stewart, 2015), but there is still limited 
research in the field of DLEs. Past research has delved into motivational, cognitive and emotional 
dimensions of learning, as well as cross-cultural differences in reading and mathematical reasoning 
(Montague et al., 2006; Siok et. al., 2004; Tang et al., 2006). More recent works explore real-time 
cognitive and neurophysiological phenomena because psychological behaviour has neural 
underpinnings which could influence physiological activity (Botvinick & Braver, 2015). Cognitive 
neuroscience research findings provide evidence that explains and predicts human learning 
(Bassett & Mattar, 2017). The interdisciplinary research of cognitive neuroscience and educational 
psychology may contribute to a neuro-educational theory, informing the best practices in various 
learning aspects including DLEs. Three common cognitive neuroscience techniques are evident 
from the literature, and these techniques include eye tracking, EEG and fMRI. Eye tracking studies 
attentional focus during a learning activity; EEG measures the electrical activity in the brain during 
a cognitive task; while fMRI estimates the changes in brain activity associated with changes in 
blood flow during a learning process. Conceptual change refers to “removal or restructuration of 
prior knowledge” (Masson et al., 2012, p. 29), and fMRI is used to study conceptual change in 
science learning and to test new research hypotheses, leading to new interpretation of the nature 
of conceptual change. 

The utility of neuroscience findings for educational research is a current debate. Diamond 
and Whitington (2015) claimed that the gap between “what we know and what we do” can be 
bridged by neuroscience findings. However, findings from neuroscientific research typically draw 
on small sample sizes and are not generalizable. Moreover, there has been a lack of neuroscientific 
research in schools and university settings. It is therefore not clear how neuroscience findings can 
actually bridge the gap between theory and practice. Nevertheless, we recognize that existing self-
reported measures applied in behavioural research are limited in understanding the cognitive 
processes of learners in a DLE. To extend our current knowledge base in this field, it is important 
to explore how neuroscientific approaches and findings could corroborate data from behavioural 
research, and inform about learning during online activities or courses. Neuroscience approaches 
may be used to research DLEs. This paper aims to show how findings from neuroscience 
approaches can complement behavioural research to enhance our understanding of learning 
supported by educational technology. We discuss three common cognitive neuroscience methods, 
namely, eye tracking, EEG and fMRI, as well as the use of these methods in advancing the 
understanding of student learning and skills in DLEs at universities. To understand the potential 
translation of neuroscience into DLEs, we review 20 recent empirical studies based on the 
neuroscience methods in the field of educational technology at university level. 

Eye tracking 

Eye movement research relates not just to the study of perceptual systems, but also relates to the 
study of neuroscience (Richardson & Spivey, 2004). Eye tracking is one of the common 
neuroscience techniques used in educational research (Anderson et al., 2014). This method 
involves the study of eye movements which comprise “a series of fixations and saccades while 
reading information or viewing scenes” (Lai et al., 2013, p. 92). Fixation is defined as “a relatively 
stable state of eye movement” while saccade refers to “rapid eye movement between two 
consecutive fixations”. Eye tracking provides both quantitative and qualitative analyses of the 
subject’s gaze (Popa et al., 2015) by capturing data related to individual interest, level of attention 
and visual attention during a learning activity. The main method used for recording eye movement 
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is by electrooculography (EOG). Currently, eye tracking has been widely used in psychology-
related fields to study basic cognitive processing during reading and information processing (e.g., 
Rayner, 2009). One notable focus area is the visual attentional processes during multimedia 
learning (e.g., Jamet, 2014; Yang et al., 2013).  

A literature search shows 12 recent empirical studies that investigated the pedagogical and 
cognitive aspects of DLEs at university level. From our review, these studies focused on two broad 
areas of learning and instruction, namely instructional aspects and learner attributes, respectively. 

Instructional Aspects 

Instructional aspects refer to the pedagogical components or approaches that influence learning. 
We identified four categories of instructional aspects from the students: cueing conditions, pace 
of instruction, instructional task, and type of devices. 

Cueing conditions 

Studies that addressed the effect of different cueing conditions on visual attention and cognitive 
load during learning included: Boucheix and Lowe (2010), Jamet (2014) and König et al. (2010). 
These three studies specifically examined visual attention and text comprehension, but their 
findings revealed mixed conclusions. Boucheix and Lowe (2010), for example, showed that cueing 
conditions were positive on undergraduates’ comprehension and orientation of attention during 
learning of the animated piano mechanism (i.e., the mechanism of note production when a key on 
the piano keyboard is pressed). Three cueing conditions, namely an arrow cue condition, a 
spreading-colour cue condition and a no-cue condition, were studied on 57 psychology 
undergraduates. Both arrow cue and spreading-colour cue conditions had greater fixation numbers 
and durations than the non-cued condition, indicating direct attention guiding helped to facilitate 
learner processing and efficient comprehension of the animated piano mechanism.  

Jamet (2014) also found that attention guiding had improved oral and visual information 
processing during multimedia learning. She worked with a sample size of 32 psychology 
undergraduates and her findings revealed a positive effect of visual sources on the learner retention 
of signalled information within a DLE. However, König and colleagues (2010) conducted an 
experimental study of three types of cueing conditions (i.e., single cue, multiple cues and no cue) 
in the context of cardiovascular system (i.e., learning about the functions of human cardiovascular 
system) and found no effect of cueing on visual attention and cognitive load. Their findings also 
indicated no effect of cueing on the comprehension of computer-based cardiovascular contents. 
König and colleagues suggested that the short duration of cueing might be the limiting factor to 
explain the findings. The difference in methodology between the two studies is the duration of the 
animations. Jamet’s (2014) multimedia learning involved a total duration of 420 s, whereas König 
and colleagues (2010) used a computer presentation with a 132-s animation. 

Pace of instruction 

Schmidt‐Weigand et al. (2010) and Meyer et al. (2010) focused on the effect of the pace of 
instruction on the learner within multimedia learning settings. Schmidt‐Weigand et al. (2010) 
found that the pace of instruction positively correlated with visual information processing among 
undergraduates in multimedia learning. Using eye tracking, they examined how undergraduates 
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split their attention in multimedia learning and how their visualisation changed with the pace of 
instruction (i.e., fast, medium and slow). While the researchers concluded that visual attention 
changed with pace of instruction, their results were limited to a specific learning content and small 
sample size (N = 31). In another related study, Meyer et al. (2010) examined whether presentation 
speed of an animation would influence the patterns of eye movements on 74 undergraduates from 
education and psychology in a German university. The animation was also limited to a specific 
learning content – a presentation on four-stroke internal-combustion engine. However, Meyer and 
colleagues found that the presentation pace (fast-to-slow vs. slow-to-fast) had no strong effect on 
the duration of eye fixations. In addition, the presentation pace had an impact on comprehension 
of micro- and macro-knowledge, but no strong effect on overall comprehension. Their findings 
revealed mixed evidence on how presentation pace affects students’ learning with animations. The 
inconsistency in results could be due to the constraint design of the animation, which relates to 
how instructional design of a learning environment may impact student learning. 

Instructional task 

A few of the reviewed studies addressed the effect of instructional task on visual attention. Tsai 
and colleagues (2012) studied the effects of 6 male university students’ visual attention on an 
online science problem. The content of the science problem was debris slide hazard with multiple 
choices for student selection. Students spent time inspecting the relevant factors in order to predict 
the debris slide hazard. Their study found that successful problem solvers paid more attention to 
the chosen options and relevant factors than unsuccessful ones. Similarly, Chen and Yang (2014) 
investigated 20 university students’ cognitive processes in an online spatial problem solving and 
science concept learning. Eye movement patterns correlated with spatial problem solving but not 
concept performance, suggesting that spatial problem-solving task might not be specifically 
designed to reflect the science concept. Susac and colleagues (2014) investigated 40 
undergraduates’ strategies in simple equation solving by eye tracking. Eye tracking data in addition 
to the questionnaire reports provided information about learners’ efficiency in solving simple 
algebraic equations and strategies used during equation solving. Their findings revealed an inverse 
relationship between number of fixations and efficiency in problem solving. This means that the 
number of fixations was reduced when students’ efficiency in equation solving had increased, 
suggesting efficient strategies employed during equation solving. 

Type of devices 

Molina et al. (2014) investigated the use of various devices in DLEs. They assessed the learning 
performance of 20 undergraduates on their use of different devices (mobile phone vs. tablet vs. 
desktop computer) to access learning materials. The researchers used an eye tracker, Tobii X60, 
to study the learners’ eye movements, which included the duration of visualisation. The time spent 
in visualisation was related to understanding and assimilating the learning contents online. They 
found that the type of devices for accessing the learning materials influenced the learner 
performance. Their findings showed that desktop and tablet were more suitable to access and 
visualise learning materials than mobile phone because of less cognitive load. Molina et al. (2014) 
also found that learners were more motivated to access learning materials with a tablet than a 
desktop.  
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Learner Attributes 

Learner attributes refer to the cognitive aspects of learners that play a role in shaping learning. 
The categories included content knowledge and working capacity. 

Content knowledge 

Two studies focused on the correlation between students’ content knowledge and visual attention 
in DLEs. Canham & Hegarty (2010) examined the possible interactions between task-relevant 
versus task-irrelevant information and content knowledge on 16 undergraduates from an 
introductory psychology course on the content of meteorology. They found that students with prior 
meteorological knowledge had a greater visual attention on the relevant information than the 
irrelevant information in weather maps during the tutorial. The authors concluded that task-
relevant information on display played an important role in student comprehension of meteorology 
and that the design should not provide more information than needed for the novice learners.  

In another study, Yang et al. (2013) used eye tracking to examine 21 university students’ 
visual attention distributions during a PowerPoint multimedia learning experience. Based on an 
instructional design, 10 university students formed the earth-science (ES) group while 11 were 
assigned to the non-earth-science (NES). Students with ES content knowledge (i.e., ES group) had 
greater attention distributions, higher relevant knowledge and higher memory test scores than NES 
students. These findings suggest that students with relevant content knowledge about ES had 
greater visual attention and scored better than those in the NES group.  

Working capacity 

The study conducted by Ariasi & Mason (2014) examined the working capacity of learners. The 
researchers used eye-tracking to investigate how 63 undergraduates processed with different 
working capacity while reading different types of scientific texts, refutation text versus non-
refutation text in the domain of physics. Their results revealed that the higher the readers’ capacity 
to process and temporarily store information while reading, the greater their knowledge gains. The 
findings suggest that eye tracking is able to evaluate the learner working capacity during reading 
in a DLE. 

Our review from these 12 empirical studies shows that the eye tracking offers a quantitative 
and objective measure of visual attention when reading texts and processing information in DLEs. 
Of these studies, eye movements were used to understand the interactions between visual 
attentional processes and learning outcomes such as contents comprehension and problem solving. 
However, findings from the studies are mixed, and it is still premature to draw conclusions on the 
interactions between visual attentional processes and learning outcomes from eye tracking. We 
next discuss studies on higher education learning informed by the EEG. 

Electroencephalogram (EEG) 

The principle of EEG technology is the placement of electrodes or channels on the head to measure 
scalp potentials (Hames & Baker, 2013). These scalp potentials represent “the linear superposition 
of electric dipoles within the brain” which are distributed throughout the brain regions. EEG 
signals reveal the electrical activity in relation to a cortical response. The electrodes detect EEG 
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signals that can then facilitate the understanding of student brainwave in action and student 
engagement during a cognitive task. Our literature search shows 4 recent empirical EEG studies 
on student emotion and learning experience in both computer-based environment and classroom. 

EEG is commonly used with behavioural measures to examine emotional states of the 
learner in an online learning system (Shen, Wang, & Shen, 2009). EEG signals in relation to 
emotions are analysed using the following frequency bands (Shen et al., 2009): delta (0-4 Hz), 
theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz), and high beta (20-40 Hz). Each frequency 
range is associated with different levels of arousal. For instance, alpha waves are related to 
calmness while high beta frequencies are associated with high levels of arousal and may lead to 
experiencing anxiety (Shen et al., 2009). According to Russell (1980), emotions are viewed as a 
combination of arousal and valence (negative to positive). Recent studies have shown that affective 
characteristics play an important role in computer-based learning and e-learning (e.g., Wang & 
Hsu, 2014). Liu et al. (2011) conducted a computer-based music experiment of 10 subjects with 
ages ranged from 23 to 35. They found that 5 subjects had the right hemisphere exhibiting greater 
EEG activity during the experience of negative emotions, while 4 subjects had the left hemisphere 
showing higher EEG activity during positive emotions (Liu et al., 2011). This finding suggests 
that individual differences may influence the processing of emotion by brain and frontal 
lateralization exists with individual differences. 

Shen and colleagues (2009) used an affective e-learning model to recognise an 
undergraduate’s emotion with brainwave signals, in the context of the student’s chosen subject. 
Their results showed a close relationship between emotion and brainwave signals, suggesting that 
affect plays an important role in engagement. Such affective model is related to student cognitive 
skills, goals of learning and interaction with the learning system (Shen et al., 2009). EEG findings 
may predict student emotions in learning and explore how student emotions evolve during the 
learning process in a DLE. 

The utility of the EEG system can facilitate student learning by improving interest and 
attention in the areas of neurocognitive psychology (Stewart, 2015). Stewart examined the utility 
of EEG classroom demonstration on undergraduates taking introductory psychology course. 
Participants who received the EEG demonstration performed better on a quiz testing the lecture 
materials. Steward’s (2015) findings suggest that EEG technique served the purpose of improving 
student engagement and increasing attention levels, accompanied by increased quiz scores. 
Emotion detection from brainwave signals could thus provide feedback to teachers, improving 
student learning experiences.  

With regard to learning outcomes, Wang and Hsu (2014) examined the influence of learner 
flow experience on enjoyment and focused attention. Their results demonstrate that increased flow 
experience improved learning performance and learning satisfaction in a computer-based 
instructional environment. Likewise, Chen and Wu (2015) assessed the effects of different online 
video lecture formats (i.e., lecture capture, picture-in-picture and voice-over) on student sustained 
attention, emotion, cognitive load, and learning performance. All three video types significantly 
promoted learning performance, with lecture capture and picture-in-picture better than voice-over 
format.  

Recent studies have shed some light on the current mobile EEG technologies. Mobile 
wireless EEG devices are available for detecting and analyzing EEG signals of the frontal lobe, 
which provide student attentiveness during learning (Liu, Chiang, & Chu, 2013). EEG is a useful 
neuroscience method for recording neural activity of a subject. Nevertheless, EEG does not 
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provide a considerably fine spatial resolution due to a greater temporal resolution than fMRI, 
which is described in the next section. 

Functional Magnetic Resonance Imaging (fMRI) 

Over the past decade, neuroscientific technologies such as fMRI have significantly improved the 
understanding of brain structure and function. For instance, language involves syntactic processing 
that is shown by the activation of the core network of left inferior frontal gyrus, left posterior 
middle and superior temporal gyrus (Weber, Christiansen, Petersson, Indefrey, & Hagoort, 2016). 
When learning a new language, the repetition of novel word orders would lead to fMRI repetition 
effects, indicating presentation of syntactic structures (word orders) and repetition enhancement 
(increased cortical activation). Existing fMRI research in education focuses on the cortical systems 
that represent syntactic and semantic components of the human language (Henderson et al., 2016). 
However, fMRI in education, particularly in online learning environment remains less informed. 
From our literature review, we found 4 studies related to the areas of language reading and 
comprehension. We did not find any study in cognitive process and learning of university students 
in the context of online environments. We reviewed the empirical studies on language processing 
and neurocognitive mechanisms of university students. 

First, neuroscience research has explored representation and processing of syntactic 
categories (e.g., noun and verb). Henderson and his colleagues (2016), for example, used a 
combined approach of eye tracking and fMRI to examine the cortical implementation of syntactic 
computations during native language comprehension on 40 native speakers of English. Their 
results revealed activation in cortical regions that are associated with prediction in language. The 
combined approach is an alternative method of testing the theoretical questions in language 
processing during reading. Henderson et al.’s work showed how the neuroimaging technique was 
able to measure the neural foundations of syntax and its effects on comprehension. 

Second, Zhao and colleagues (2012) used fMRI to study how different language systems 
had different syntactic representation and lexical processing. Fifteen native alphabetic language-
speaking university students who learnt Chinese as second language (L2) for at least one year 
exhibited stronger activation in the right lingual gyrus and right fusiform gyrus than the 15 native 
Chinese speakers. The stronger brain activation in L2 learners suggests that they required 
accommodation and assimilation patterns for reading of Chinese characters.  

Third, Weissberger et al. (2015) examined the relationship between linguistic and non-
linguistic executive control on 21 bilingual (English-Spanish) undergraduates with a 2 (language 
vs. colour-shaped tasks) × 3 (switch, single and stay trials) experimental design. Participants were 
cued to switch between tasks (i.e., switch), perform one task (i.e., single) and perform the same 
task as the preceding trial (i.e., stay). Their fMRI results showed a considerable overlap in brain 
regions underlying language and colour-shaped task on switch trial versus single and stay trials. 
On the contrary, there are fewer overlapped brain regions between tasks on stay trial. These 
findings suggest that a bilingual participant requires some cognitive demands for successful 
language switching and communication.  

Finally, Prat and Just (2011) used Scanning Probe Microscopy 2 (SPM2; Wellcome 
Department of Imaging Neuroscience) to examine the distribution of brain activation during 
sentence comprehension as a function of cognitive capacity and individual verbal working memory. 
Collection of fMRI data was done by axial slice acquisition timing, motion-corrected and 
normalized to the Montreal Neurological Institute (MNI) template. Based on fMRI data, high-
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capacity readers exhibited increased activation in both striatum and prefrontal regions with 
increasing syntactic complexity than low-capacity readers, indicating greater neural adaptability 
to changing linguistic demands.  

Current evidence about learning in higher education relies heavily on questionnaires which 
may be constrained by self-reporting bias (e.g., Wu, 2015). As discussed in the abovementioned 
studies, brain imaging offers insights into the nature of cognitive processes involved in academic 
tasks (Masson et al., 2012). However, a major drawback of the fMRI scanner is the cost. The fMRI 
requires a very expensive set-up, including high costs for renting the scanner and hiring the 
technical experts. Moreover, fMRI scans are expensive and significant funds are needed for fMRI 
data collection. Expensive software packages are also needed to interpret the fMRI data (Steinmetz 
& Atapattu, 2010). Furthermore, the fMRI scanner permits only one subject for each scan which 
is not cost-effective. Nevertheless, fMRI data may help us establish a predictive, broad framework 
for a neuro-educational theory to inform educators about human learning and brain neural 
networks. Finally, we need to consider the implications of cognitive neuroscience for improving 
or refining our practices in learning and instruction. 

Implications for Research and Practice 

Our review of current empirical studies highlights the following trends in educational neuroscience: 
(1) eye tracking focuses on attention studies related to computerised activities and e-learning (e.g.,
Molina et al., 2014); (2) EEG measures student engagement level in an online learning system and
cognitive load during an online lecture (e.g., Chen & Wu, 2015); and (3) fMRI research focuses
on computerised cognitive tasks such as reading and working memory (Zhao et al., 2012). We
argue that these neuroscience methods (eye tracking, EEG and fMRI) enhance our understanding
of human learning in DLEs in two ways. First, these neuroscience methods open up a new
perspective of looking at student learning and cognitive processes that can stimulate new research
hypotheses. Second, findings from these neuroscience methods revealed that neuroscientists and
educators need to work more closely together to translate neuroscience research into education
paradigm, which may help to bridge gaps between neuroscience and education.

There are still gaps in the current literature of neuroscience approaches and student 
experience in DLEs that need to be addressed. One area is the limited understanding on how 
pedagogical aspects of DLEs can improve student learning, as most DLE studies tend to neglect 
this concern and focus on course evaluation or learning outcomes. Another area is the lack of 
understanding of student engagement and learning process for online courses.  

EEG has the potential to inform whether students enjoy from online learning or they find 
it too challenging. Yet, studies in this area particularly in MOOCs have not received attention. 
EEG data might also help to explain student engagement and dropout rate in MOOCs, which is 
high. Users do not continue the online courses after enrolment (Freitas, Morgan, & Gibson, 2015). 
Perhaps, students who fail to engage in the course are also dropping out (Henrie et al., 2015) may 
not be an ability issue. It may be due to a lack of motivation or other reasons. EEG can be used to 
track student engagement level during a learning activity. For example, student emotions can be 
collected and interpreted as frustration or boredom by the computer (Gil, Virgili-Gomá, García, & 
Mason, 2015). 

Existing fMRI research in neuroscience education tends to focus on the cortical systems 
that represent syntactic and semantic components of the human language (Henderson et al., 2016). 
Our review of current literature suggests that there is much research attention on the patterns of 
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information processing of university students in language comprehension and reading using fMRI 
(e.g., Henderson et al., 2016; Prat & Just, 2011). Such studies typically employed cognitive tasks 
in the form of block design for presenting stimuli within the scanner. As only one subject is 
scanned each time, fMRI can reveal individual differences in verbal working memory capacity and 
information processing capability with a particular task or class of tasks. By using the scanner 
environment, we are able to obtain individual neural substrates in the time-course of e-learning in 
relation to behavioural performance at multiple time points. However, fMRI has one main 
methodological limitation – the participant in the scanner provided responses to both tasks using 
button presses that were flashlight monitored by the scan operator, which could lead to inaccuracy 
of responses. Neural adaptability to changing task demands may help us understand the learner 
cognitive ability in coping with the linguistic demands in DLEs. Research in areas of cognitive 
and learning processes in DLEs may need more work.  

Perhaps the key challenge to the work of measuring student engagement and motivation in 
DLEs is the lack of consistency among model, operationalisation and instructional tool. Although 
most neuroscience studies focused on cognition and brain activity, the recent studies explored how 
brain imaging relates to motivation (e.g., Lee & Reeve, 2012). For example, a neurotransmitter 
known as dopamine is associated with cognition and reward seeking during the decision making 
process (Kanwal, Jung, & Zhang, 2015). The peak of dopamine release in the brain could relate to 
an individual’s decisions that are more reward-based, linking to extrinsic motivation. Neuroscience 
thus brings new ways of understanding student engagement. Furthermore, neuroscience and 
educational methods may potentially model the delivery of online learning to students and improve 
their learning experience.  

DLE is attributed to social, cognitive and teaching presence (Kozan & Richardson, 2014) 
because it involves complex and educational experience. Brain imaging techniques may provide 
insights into the activation of brain cortical area central to an online task and emotional activation 
of amygdala due to learning anxiety. The understanding of such concepts is currently limited in 
the areas of online and blended learning. DLE is unique to the learning of concepts across diverse 
learners, such that learners may experience different levels of emotion during learning. 
Understanding the levels of emotion by brain imaging may lead to a new research hypothesis and 
support the existing findings. Such effort to bridge student digital learning and cognitive process 
could reveal new research findings and further develop the basis of empirical findings related to 
education. 

Neuroscience may be able to provide specific evidence into certain groups of learners who 
do not benefit sufficiently from the DLEs. The application of EEG and fMRI during a decision 
making or problem-solving process may provide insights about why some students fail to learn 
within the DLEs. As such, neuroscientific evidence may provide insights into the constraints of 
the learning brain and help to explain why some learning environments fail to improve student 
performance. Neuroscientific data may also offer specific knowledge required to design powerful 
DLEs in particular to academic content areas. Such evidence-based research is useful to inform 
online learning and DLEs. 

Despite the abovementioned benefits of neuroscience research, there are concerns about 
the interpretation of neuroscientific facts and selection of relevant findings to support behavioural 
methods. There are also challenges in designing neuropsychological studies as they require 
interdisciplinary effort and team. First, to integrate neuroscience methods into behavioural 
research, we have to collaborate across multi-disciplines, in particular the neurocognitive scientists, 
learning designers, educational researchers, and educators. The collaborators need to be clear of 
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one another’s role and able to connect the fields of neuroscience and education. It is important to 
note that neuroscience methods may not provide direct evidence about the key educational 
considerations such as context (Varma, McCandliss, & Schwartz, 2008). Hence, when 
contextualising contents in a DLE, it is necessary to work with the learning designers or the 
expertise in instructional design. Second, neuroscience should not replace education research. 
Instead, neuroscience methods should be used as a complementary means to support findings of 
education research. This is because neuroscience approaches are not able to provide a causal-effect 
solution. Therefore, neural correlates are used to support data from the behavioural measures. We 
should be mindful of such limitations and employ neuroscience methods in a complementary 
manner. Finally, the pragmatic reason is neuroscience methods are expensive to apply. Although 
neuroscience methods may resolve some of the limitations within education, policy-makers and 
stakeholders should practise a cautious optimism. To an extent, bringing neuroscience methods 
into educational research may appear too upstream approach to the policy-makers who provide 
research funding to education. Unless there are government agencies who advocate for such 
research, educationally relevant neuroscience proposals might attract additional research funding 
grant.  

To sum, the utility of neuroscientific techniques enables us to focus on the learning process 
rather than the learning outcomes. The neuroimaging findings are able to give us a better 
understanding of the brain, indicating the specific areas of brain activation which in turn could 
correlate with the behavioural results. As such, neuroimaging findings might support the self-
reported data and explore brain regions with neural activation in relation to changes in performance 
during an online activity. Given the potential payoff of integrating neuroscience methods into the 
field of educational technology, we would be able to understand the “why” and “how” students 
learn in DLEs. We propose that neuroscience research should be anchored in a multi-disciplinary 
collaboration. This way, research can better inform practice. With neuroscience evidence 
informing the different aspects of learning and instruction in particularly DLEs, future research 
should move into an interdisciplinary effort to look into intervention studies. 

Conclusion 

The present paper provided a discussion of the use of neuroscience methods (corroborated by 
behavioural measures) to study brain mechanisms related to learning and instruction within the 
field of educational technology. We found that eye tracking is most widely applied in cognitive 
neuroscience research, followed by EEG and fMRI. Eye tracking data provided information about 
learner attributes and instructional aspects of a DLE. However, eye tracking cannot inform 
understanding of student engagement and emotion. Those were revealed through EEG. Yet, EEG 
data lack neural evidence of student engagement and cognitive processes. Educational studies 
involving fMRI can offer neural data that might be promising for student engagement and 
cognitive processes. Our discussion pointed out some of the key advances in our understanding of 
the brain cortical regions (e.g., inferior frontal gyrus) underlying learning and the potential to 
inform learning problems in DLEs. We conclude that studies in neuroscience using one tracking 
or imaging technique are inadequate to inform the underpinnings of learning and instruction in 
DLEs. We recommend that future studies consider their work in the light of data from multiple 
neuroscience techniques complementary to behavioural measures, to provide a more holistic 
understanding of learning and instruction in DLEs from a neuroscience perspective. Finally, we 
also suggest more collaboration among neurocognitive scientists, learning designers, educational 
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researchers, and educators to enhance understanding in this area given that the findings of using 
neuroscience technique is still in infancy. 
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