PREVERBAL DIRECTIONAL PARTICLES IN LUTUV

September 2023

Dillon Tautunu Smith

Indiana University Department of Linguistics

1. INTRODUCTION
Directive systems are common among Tibeto-Burman languages (Delancey 1985) and previous research suggests that directive systems in the Chin language family are robust (Osburne 1975, So-Hartmann 1986, Delancey 1985, Chhangte 1989, King 2010, Par 2016, Chelliah & Utt 2017, VanBik & Tluangneh 2017, Zakaria 2018, Genetti et al. 2021). This paper introduces the preverbal directive system in Lutuv. The data show that the function of this system hinges on the verbal context as opposed to a one-to-one correspondence (see also Smith & Ziegler, this volume).

2. ENCODING MOTION
Talmy (2000) defines key components of a Motion Event, a type of complex event among others (e.g., resulting states) with certain lexicalization patterns across languages. The internal components of a motion event include: Figure (the moving argument), Motion (the translatory motion event), Path (the trajectory of motion) and Ground (the object that the Figure moves in relation to). The external components are Manner (the way in which the Motion event occurs), and Cause (the agentive force from which the Motion originates). These components are schematized in (1) below.

(1) The pencil rolled off the table
 [Figure] [Motion+Manner] [Path] [Ground] (Talmy 1985: 61)

Talmy (2000) categorized languages based on where the Path component was lexicalized—namely, within the verb or external to it. These categories were named Verb-framed (V-framed) or Satellite-framed (S-framed), respectively. For example, the Path component in English is lexicalized outside of the verb in a satellite (see off in 1), making English an S-framed language. In contrast, (2) below shows a V-framed language like Spanish, where the Path component is combined with Motion, rather than the Manner being combined with Motion as in (1).

(2) La botella salió flotando
 [Figure] [Motion+Path] [Manner]
 “The bottle exited floating.” (Talmy 2000: 223)

Although various research has made use of this categorization (e.g., Croft et al. 2002, Slobin 2004), questions have been raised about how to categorize languages with satellites that can encode both Motion and Path outside of the main verb. These satellites form part of a grammatical category known as Associated Motion (henceforth AM; Koch 1984, Guillaume & Koch 2021). One of the main divisions among languages with AM is whether the AM system’s function is dedicated solely to encoding Motion co-events onto verbs, or whether it has multiple functions. For example, many African languages (Niger-Congo, Nilotic, and Afro-Asiatic) show
context-dependent usage of AM and deictic directionality (DIR)—that is, they have a system that may add a directional (Path) component to verbs of motion (like a satellite-framed language), but may also add a motion co-event to non-motional verbs as in a standard AM system. This type of multifunctional system is known as Deictic-Associated Motion (Belkadi 2015, 2016, 2021).

Directional encodings, referred to as “directive systems” in the Tibeto-Burman tradition (Wolfenden 1929, Delancey 1985), are ubiquitous throughout the Tibeto-Burman language family. They provide a deictic-directional orientation for the motion event lexicalized by the verb they attach to (Delancey 1985). They are also prevalent in Chin languages, and one such system consistently appears preverbally across many documented Chin languages (Osburne 1975, So-Hartmann 1986, Delancey 1985, Chhangte 1989, King 2010, Par 2016, Chelliah & Utt 2017, VanBik & Tluangneh 2017, Zakaria 2018, Genetti et al. 2021). This paper describes the preverbal directive system of Lutuv, a member of the Maraic sub-branch of Chin languages. VanBik and Tluangneh’s (2017) description of the robust preverbal directive system in Hakha Lai was utilized to elicit directly comparable data with a speaker of Lutuv, a Maraic Chin language which is genetically similar to Hakha Lai. This paper describes the results of those elicitations.

3. PREVERBAL DIRECTIVES IN LUTUV

<table>
<thead>
<tr>
<th>Gloss</th>
<th>Lutuv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Away from the DC ¹</td>
<td>va</td>
</tr>
<tr>
<td>Toward the DC</td>
<td>vie</td>
</tr>
<tr>
<td>Down toward the DC</td>
<td>za</td>
</tr>
<tr>
<td>Upward</td>
<td>kie</td>
</tr>
</tbody>
</table>

Table 1. The preverbal directive system in Lutuv.

Unlike dedicated AM systems, these particles’ multifunctionality is evidenced in different verbal contexts, much like what has been described for deictic-associated motion (D-AM) systems (Belkadi, 2015, 2016, 2021). Specifically, the preverbal directional system in Lutuv not only encodes deictic-directionality onto motional verbs but also encodes a co-motion event onto non-motional verbs, like languages with AM.² According to VanBik and Tluangneh (2017), this DIR/AM function is explicitly articulated in the Hakha Lai paradigm via different forms known as Verbal Stem Alternations (e.g., rak ‘directional toward the DC’ and ra ‘movement toward the DC’). In contrast, when Lutuv particles in Table 1 are combined with a verb that has no motion semantics, these directional particles (e.g., kie in 3 below, bolded) encode a motion co-event carried out by the subject or object argument temporally prior to the main event expressed by the verb. This structure puts Lutuv verbs of this type in the category of AM, as the motion event is entirely external to the main verb (Guillaume & Koch 2021).

¹ DC = Deictic Center, which defaults to the speaker of the utterance unless otherwise specified by the context.
² Several particles also have tense and aspectual functions (see Smith & Ziegler, this volume).
However, when combined with a verb with motion semantics, the same kie prefix offers a Path specification for the already-present motion event rather than creating a separate co-motion event (as seen in 4 below). The context-dependent multifunctionality demonstrated in (3) and (4) aligns with a D-AM interpretation (Belkadi 2015, 2016, 2021, Genetti et al. 2021) instead of a dedicated AM-only interpretation (c.f. Cavineña, Guillaume 2008).

(4) Hiekha luo na i kie cakuo
[Figure] [Path] [Motion+Manner]
Hakha LOC FOC 1SS UPW walk
‘I walked up to Hakha.’

4. NOTEWORTHY OBSERVATIONS AND FUTURE DIRECTIONS

In conclusion, the function of the preverbal directive system of Lutuv is multifaceted. Unlike Hakha Lai, whose AM/DIR functionality is encoded using verbal stem alternations (VanBik & Tluangneh 2017), Lutuv relies on verbal context. The same forms encode both prioritive motion co-events onto verbs like AM systems, as well as specify the trajectory of motion for verbs that already have motion semantics as in deictic directional systems. The motionally-dependent behavior of the Lutuv preverbal system thus reflects Deictic-Associated Motion rather than dedicated Associated Motion (Belkadi 2015, 2016, 2021). The multifunctionality of Lutuv directional prefixes calls for future research to supplement the current data with data collected using methodologies other than direct elicitation, such as conversation, storytelling, and narration. These data can offer better comparisons with AM and D-AM systems from different language families, as well as test previously established hierarchies within AM (e.g., Levinson & Wilkins 2006, Guillaume 2016, Belkadi 2016).

5. REFERENCES

