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Abstract 

The analysis of visual texture occupies a central role in 
many areas of computer vision. Applications of this technol­
ogy include product inspection, medical image analysis, and 
analysis of remotely sensed data, such as satellite images 
of the Earth. Standard approaches to texture analysis gen­
erate a large number of statistics which are difficult to intu­
itively visualize. We explore the application of Self­
Organizing Maps (SOM) , a type of artificial neural network, 
to visualizing these texture descriptors. 

1. Introduction 

Visual texture, while an intuitive concept to grasp, is one that 
is difficult to rigorously define and quantify. Texture has been 
characterized as being made up of "repetitive patterns," [1] 
or possessing a "constant, slowly varying , or approximately 
periodic" set of local statistics. [2] Some examples of textu re 
images are shown in Figure 1. Various techniques for ana­
lyzing texture data have been proposed and used with some 
success. These include geometrical , model-based, signal 
processing, and statistical methods. 

1. 1 Geometrical Methods 

Geometrical methods center mainly on their characteriza­
tion of textures as being constructed of "texture elements" in 
the form of primitive geometrical shapes. Analysis of a tex­
ture is then a problem of extracting these texture elements 
and either characterizing them individually in terms of statis­
tics derived from them, or describing the original texture in 
terms of the placement of these texture elements within it. 
[3] 

1.2 Model-Based Methods 

To analyze a texture using a model-based method, a theo­
retical model of the texture's perceived structure is generat­
ed, which ideally describes the texture itself as well having 
the ability to synthesize new textures of the same structure. 
Markov random fields are an example of a useful model 
based approach [3]. 

1.3 Signal-Processing Methods 

Signal processing methods, such as those utilizing wavelet 
techniques, have also been successfully utilized for texture 
analysis. Texture apparently lends itself well to signal pro­
cessing analysis. Recent studies also suggest that the 
human brain may perform frequency analysis on the images 
it perceives [3] . 

1.4 Statistical Methods 

Statistical methods have also proven useful. Sharma et al. 
[11] evaluate a number of texture analysis methods, and 
conclude that statistics derived from co-occurrence matri­
ces yield the best results of any single method, when tested 
against the auto-correlation, edge frequency, primitive­
length, and Law's-method techniques. A more detailed 
description of the construction of these matrices and the 
statistics based upon them follows. 

Figure 1 - Some examples of visual texture. Note the regular patterns, uniform brightness, and geometric forms 
present. While intuitively we can class all of these as visual texture, it's hard to precisely define the characteris­

tics that they have in common. 
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2. Gray Level Co-Occurrence Matrices 

For the N x N image with G gray levels and a displacement 
vector d, Haralick[4] defines the gray level co-occurrence 
matrix Pd as the matrix in which the (i, J) entry is the num­
ber of times that the gray value i follows the gray value j with 
displacement d. For example, in the artificial GLCM in 
Figure 2b, the number 2 in the (1,2) position represents the 
fact that the gray value 1 followed the gray value 2 with dis­
placement d twice on the sample image in Figure 2a, indi­
cated by the diagonal lines. 

Artificial image subset 

1 3 

2 1 

1 2 

1 3 3 1 

Resulting gray level co-occurrence matrix 

1 2 3 
1 

0 2 1 

2 
2 1 1 

-
J 

1 0 1 

Displacement d = <1 ,1> 

b. 

Figure 2 - An artificial image and its corresponding 
GLCM 

The GLCM consolidates information about the distribution 
of gray levels in an image, allowing analysis of the data for 
patterns it may contain. As a part of his analysis, Haralick 
also proposed a set of useful statistics derived from the co­
occurrence matrix. Among those were the following, also 
used in our experiments: Angular Second Moment, 
Contrast, Correlation, Inverse Difference Moment, Entropy, 
Variance, Cluster Prominence, Cluster Shade, and Diagonal 
Moment. These statistics codify in numerical form various 
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visual characteristics of the image; for example, 
Homogeneity is the numerical measure of the image's ten­
dency to have smooth changes in color. 

These statistics capture a wide range of the image's fea­
tures. In practice, a set containing these nine statistics is 
computed for each image, and is represented as a nine­
dimensional vector. Table 2, for example, shows the statis­
tics generated for the images shown in Figure 1. 

Visualizing these vectors, or image feature descriptors, was 
the primary goal of this project. Specifically, we explore the 
applications of Kohonen's self-organizing feature map as a 
visualization tool for these descriptors. 

Angular Second Moment 
IPJ(i,j) 

Contrast 
L (i- j)l Pd(i,j) 
ij 

Correlation I (i-µJ(j-µj) 

. . ~al ·al l,J i j 

Inverse Difference Moment 
L PJ(i .. ~) 

i,j;i# lz - 1 I 

Entropy I Pd Ci, 1) 1og Pd Ci, J) 
i ,j 

Mean 
µi =Li ·Pd(i,j) µj = IJ · Pd(i,j) 

ij 
' i,j 

µii =µi +µj 

Standard Deviation al~ = I Pd Ci, fl i - Jli· 1l 
i,j 

(J~ = LPd(i, j)[j- µj ]l 
i,j 

Variance 

ai=R <Jj=R 
' 

Cluster Prominence 
LPd(i, ;)(i + j - 2-µii) 4 

i ,J. 

Cluster Shade 
LPd(i,j)(i + j-2-µiJ.)3 
ij 

Diagonal Moment 
Iii - JI· (i + j- '.?.- µii)Pd(i, J) 

Table 1 - Formulae for GLCM Statistics 



3. Self-Organizing Feature Maps: 

The concept of self-organizing maps of neural networks 
was first developed by Teuvo Kohonen in the early 
1980's [5-8]. It has found application in fields as diverse 
as the analysis of recorded human speech, the process­
ing of images of the Earth taken from space, and the 
analysis of medical data. The basic SOM can be thought 
of as a sheet-like neural structure, in which each neuron 
contains a vector of the same dimensionality as the input 
data. The map is first initialized with random vectors, 
then "trained" by the following iterative process - Figure 
3 shows an example. 

a)An input vector, x, is presented to the map. 

b) The map is searched for the component neuron 
containing the vector most similar to x, as determined by 
a metric such as the Euclidian distance function. 

c) The closest vector, Mx, is located and modified to 
be incrementally closer to the 
vector x. 

d) A neighborhood Nd about Mx is then defined as 
being all those neurons that are within distance d of Mx, 
and each neuron in that neighborhood is caused to 
become slightly more like x as the neighborhood radius 
dis decreased iteratively. Thus, those neurons close to 
Mx become more like x, but do so to a greater degree 
than those farther away. 

Mathematically, the process is carried out as follows. Let 
t ' 1, 2, ... be the step index, and determine each best 
matching index c for each sample x(t) by the following 
condition: 

Vi , llx(t)- me (t)ll ~ llx(t)- mi (t) ll 

Following determination of this "winning" node mc(t), a 
subset of the nodes around it determined by the "neigh­
borhood function" hc(x),i are updated according to the 
following: 

mi (t + 1) =mi (t) + h c(x),i (x(t)- mi (t)) 

This regression is typically performed iteratively over 
available samples until a satisfactory map is formed -
that is, one that separates the vectors that are used to 
train it into some kind of grouping that the viewer can 
make sense of. 

Since the initial vector placement on the map is random, 
it is typically necessary to generate a large number of 
trial maps before obtaining a map suitable for visualiza­
tion . Kohonen et al. developed procedures to automate 
this map selection process. Upon completion of this 
algorithm, we expect to find similar vectors, representing 
similar features, clustered close together in the final 
map. In general, we may view the SOM as a way of map­
ping ·a higher dimensional space to a lower dimension, 
while preserving much of the order inherent in the high­
er-dimensional structure. 

4. Computing Environment 

For our experiments we used standard AMO Athlon 1.2 
GHz PCs with 256 MB of RAM running the RedHat dis­
tribution of GNU/Linux. For image preprocessing we 
used the Xite [12] suite of tools as well as custom scripts 
written in Perl and Python. To generate maps we used 
the SOM_PAK [13]. A typical high-quality map took an 
average of four to six hours to generate with this hard­
ware/software combination. 

5. Visualization of Baseline Textures 

For our initial experiment we chose textures available as 
part of the VisTex visual texture library [9] . We parti­
tioned these textures into a training set and a testing set, 
selecting sample textures of each visual description (i.e. 
clouds, water, tile, etc) for each set. We then performed 
the following process on each set: 

1. Crop images to a uniform size. 

2. Convert images to a grayscale representation 
in the proper file format. 

ASM Contrast Correlation /OM Entropy Variance Oiag. Cluster Cluster 
Moment Shade Prom 

0.1062708 0.03366648 1 .4 78081 e-05 0.5231162 0.7864788 0.2731719 0.2929115 0.2648529 0.1409712 

0.01182424 0.06037223 4.531076e-05 0.2036668 0.8939893 0.5660633 -0 .04692755 -0.8037589 0.5553433 

0.02734371 0.03249223 2.972172e-04 0.4728295 0.8215885 0.2038240 -0.03416768 -0.1012733 0.07205668 

0.02264220 0.04929722 0.001291626 0.2284742 0.8310419 0.08228722 0.1562082 0.03632461 0.01390445 

Table 2 - Sample vectors from the images shown in Figure 1 
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Self-organizing map Portion of trained self-organizing map 

Input vectors 

a. b. 

Figure 3 - An artificial self-organizing map, before and after training 

3. Generate the nine GLCM statistics for each 
image, and place the resulting vectors in a data 
file - each line of the data file containing the 
nine vector components representing one tex­
ture. 
4. Normalize each column vector in the data file. 

5. Train the self-organizing map on the data 
interactively.2 

6. Display the map using a umatrix visualization. 
In a umatrix the map is represented as a grid of 
nodes. Each node is color-coded to represent 
the average distance between it and its neigh­
bors, and labeled with the label of the input vec­
tor that it most closely matches (if there is one) 
or with a dot (if it matches no input vector). 

The application of these steps is illustrated in the follow­
ing simple example. First we selected three textures 
from the VisTex database that were reasonably distinct 
from each other, as shown in Figure 4. Since three 
images represented by three vectors provide insufficient 
data for effective visualization, we subdivided each tex­
ture into 16 smaller texture images, each having statis­
tics similar to those of the parent image. We used the 
resulting vectors to train a self-organizing map consist­
ing of 300 nodes arranged in a 30x10 hexagonal grid. 
Figure 5 shows the resulting u-matrix visualization. Note 
the clustering of the textures by visual similarity. 

Texture A (Fabric) Texture B (Metal) Texture C (Wood grain) 

Figure 4 - Images used in this experiment 
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ASM Contrast Correlation /OM Entropy Variance Diag. Moment Cluster Shade Cluster Prom 

0.9684827 0.005723557 1.000000 0.9919758 0.6103299 .006407373 -0.0004233161 -8.991040e-05 3.377443e-05 

0.03910838 0.8241672 2.457828e-05 0.1977914 0.9567972 0.8525648 0.8815748 0.7389579 0.6972131 

0.03963804 0.8263306 2.675579e-05 0.1964169 0.9556544 0.8058157 0.8879519 0.6914841 0.6412812 

0.02250192 0.6140333 9.628698e-05 0.1025383 0.9899384 0.4590231 0.1435912 0.06562232 0.1324560 

0.7320469 .008291456 0.6378333 0.8320489 0.6406141 0.007660096 0.001709761 7.052707e-05 4.966373e-05 

0.6815332 0.01102695 0.4283442 0.7531977 0.6507503 0.009145611 0.003249236 5.739477e-04 1.979026e-04 

0.02018491 0.8281551 6.869980e-05 0.08987050 1.000000 0.5945056 0.1409244 0.06873654 0.2037111 

0.02281073 0.6249805 9. 906084e-05 0.1104830 0.9886962 0.4507733 0.1387794 0.06166328 0.1239210 

0.02348824 0.5844237 9. 939955e-05 0.1123659 0.9886962 0.4071553 0.1689786 0.06610873 0.1022450 

Table 3 - Nine of the 48 statistic vectors produced. 

AAAAAAAA •• • CC CCC CCC • CC CCCCC 

AAAA.AAA • A •• CCCCCCC-C 

AAAAAAAAA. •• CCCCCCC • CC • CCCC • CCC 

AAAAAAAAA • CCCCCCCCCCCCCC 

1~· ..... 
AAAAAAA •• • • • •• CCCC 

AAAAA •• BB8 •••• C • C • C ••• CC 

AAA •• BBR8l3 •• C • CCCCC • CCC 

0\ .. 
A ••• BBB8BBB •• C CC • CC ee CC 

l 
c c • c 

B B S B B B B B • • · ~ • C C e • C C 

Figure 5 - Scaled statistic vectors from A, B, and C, including those in Table 3, visualized using a self-organizing 
map. Note the clear demarcation between vectors from the sub-images of the three textures. 

Following these initial experiments we expanded our 
study to include the testing and training data sets 
described at the beginning of section 5. Our goal was to 
see if the SOM segregated the statistical vectors in a 
manner that reflected the original image represented by 
the vector - i.e. do vectors representing similar visual 
images cluster together in the resulting display. To 
answer this question, we performed the following exper­
iment: 

1. Generate three self-organizing maps of differ­
ing dimensions and parameters, but all with the 
training set as their input data. 
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2. Map the testing set onto each of these maps. 

3. Evaluate the results by the following criterion: 
If the texture in the training set to which the train­
ing vector mapped the closest appeared visual­
ly similar3 , count the match as a success; other­
wise, count it as a failure. 

In these experiments, the SOM typically mapped previ­
ously unseen textures between 70% and 80% of the 
time. This is consistent with research literature, report­
ing the discrimination capability of the GLCM-derived 
statistics at about 80% on similar data sets [11 ]. 



To assess the scalability of this approach, we subdivid­
ed the input textures into smaller sub-images (thus scal­
ing up the number of vectors that the map would need to 
use as its training set). We found that the SOM algorithm 
was unable to discern the minute differences in the sev­
eral thousand very similar input vectors, even when the 
number of nodes was also increased. Figures 10 and 11 
show two SOMs. The first is trained on a vector file that 
represents each texture in the training data set split into 
four sub-images; the second represents each texture in 
the training data set split up into sixteen sub-images. 
Note the strong contrast between the two maps in terms 
of their ability to group the data coherently. Figure 11 
shows the image statistic vectors separated into clusters 
on the map, grouped roughly by visual similarity. In 
Figure 10, by contrast, most of the vectors are packed 
tightly together with only a few deep ravines running 
across the lower left-hand corner of the map. We believe 
this is due to the insensitivity of the GLCM in conjunction 
with SOM visualization to very small degrees of separa­
tion in the input vectors. 

6. Visualizing Fingerprint Texture Statistics 

Having explored the effectiveness of the self-organizing 
map algorithm for visualization of statistics derived gray 
level co-occurrence matrices on a baseline set of tex­
tures, we sought to explore its possible use in visualizing 
the texture statistics of human fingerprints. The finger­
print images we used for this experiment were acquired 
from the publicly available fingerprint image sample set 
on from the National Institute for Standards and 
Technology (NIST) [10] . As illustrated in Figure 6, we 
discovered that many of the fingerprints collected are 
direct scans of fingerprint cards, complete with handwrit­
ten notes, labels (e.g . "R. Thumb") and are of inconsis­
tent size and orientation. Additional preprocessing was 
necessary during the preparation of these images to 
remove handwriting (where possible) and to . form 
images of consistent size and orientation. 

Also, since these images were acquired under various 
lighting conditions, we performed histogram normaliza-

JJI 

I. 

tion on each image to standardize brightness and con­
trast. This involved modifying the histogram of each 
image through a Gaussian normalization process. After 
normalization was complete, we continued with the gen­
eration of the GLCM statistics. 

We approached this problem in two stages. First we test­
ed the SOM algorithm's ability to discriminate the differ­
ence between vectors representing fingerprint textures 
and those representing the textures from the VisTex 
database. Figure 8 shows one of the resulting maps, 
with fingerprint textures labeled "F" and all others 
labeled "T". Note that the vectors representing the finger­
print images are reasonably well separated from the 
other textures, evidence that the vectors representing 
their GLCM statistics are sufficiently distinct. 

Further experiments, however, seemed to indicate that 
individual fingerprint textures as representing by GLCM 
statistic vectors are not sufficiently distinct from one 
another to allow meaningful classification with this tech­
nology. Fingerprints are typically classed by features 
such as the shape of the center structure, often 
described as a "loop," "whorl ;' or another such category. 
The conjunction of gray-level co-occurrence matrices 
with the self-organizing map does not seem to be sensi­
tive to structural elements at this level of detail , and 
therefore we do not observe fingerprints with the same 
geometric characteristics (i.e. loops or whorls) close to 
each other with any significant frequency. This is consis­
tent with the experiments described in section 5, in that 
the SOM is unable to distinguish reliably between tex­
tures which are only subtly different. Figure 9 shows one 
of the maps produced on the set of fingerprint textures. 

7. Visualizing Merged Fingerprints and Textures 

Having established the capability of the self-organizing 
map for visualizing GLCM statistics derived from individ­
ual textures, we explored visualizing statistics obtained 
from images composed of fingerprints and various other 
textures. Our goal was to determine if statistics repre­
senting the composite textures were sufficiently distinct 

• • 

Figure 6 - Fingerprints from the NIST database, prior to preprocessing 
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from statistics from the other two types for visualization 
to be possible with a SOM. 

The textures we used in th is experiment were generated 
by overlaying each of forty randomly-chosen fingerprint 
textures on forty of the standard VisTex textures, one-to­
one, to produce forty composite textures. This blending 
was accomplished by choosing the darkest of the pixels 
in each of the source images to produce the destination 
pixel ; we chose this method to enforce transparency of 
the light areas of the fingerprint images, and give the 
visual appearance of a fingerprint impressed on a sur­
face with some dark ink. Figure 10 shows some of the 

resulting textures.We realize that a fingerprint such as 
the one in Figure 10 (A) - e.g. a fingerprint on bark at 
this relative scale- is unrealistic. Fingerprints in the real 
world are most often detected on smooth surfaces. We 
chose fingerprints such as those in Figure 10 because 
of the interesting technical challenges they presented 
rather than from the possibility of any real-life applica­
tion. 

Following the construction of these images we generat­
ed their representative statistics as described previous­
ly, then trained a self-organizing map using these statis­
tics in conjunction with those from the other two texture 

Figure 7 - The fingerprints from Figure 6, after preprocessing 

ASM Contrast Correlation /OM Entropy Variance Diag. Cluster Cluster 
Moment Shade Prom 

1.7688E-04 3.9962E+02 -4.0964E+02 8.7709E-02 4.0363E+OO 1.9196E+03 -3.3546E+01 2.2817E+05 1.2224E+08 

1.3744E-02 1.0452E+03 -8.8027E+01 1.8795E-01 3.8417E+OO 4.7442E+03 -9.4098E+02 -7.1590E+05 5.5199E+08 

1.2864E-04 6.2188E+02 -3.9540E+02 6.6091 E-02 4.1602E+OO 2.2244E+03 -2.0033E+02 -2.8351 E+04 1.3757E+08 

Table 4 - Statistics generated from the images in Figure 6, after preprocessing 

T • T • T T ,,,.. T T T~T T T ·~ T 

T • • • T T • • T • • • l . • 
./ 

F F F F F • • T T • T • T T --

T F F F T F T 
~ 

T T T , . T • • 

T • • F • F • • T • T • • 

• • F • F • F T • T • T • • T 

T T F • F • • • • T • • ... 
..... ,.,,, 

• • T • e l T T • • • ' T I • 

I , . 
• • • • • T • • F • • T 

/ 

T T T T T T • F • • F • .................. .......... ......... ,,, , ... 

Figure 8 - Fingerprint and Baseline textures visualized 
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sets. A sample map is shown in Figure 11. Note that the 
statistics representing the composite textures are distin­
guished from those of the VisTex and NIST fingerprint 
sets. The four textures shown in Figure 10, for example, 
have been clustered near the center of the map. The 
composite textures tend to occupy the center of this 
example map, while fingerprints themselves are 
grouped to the left and VisTex textures are primarily 
found on the edges. 

In addition to distinguishing between composite and 
non-composite texture statistics, the SOM was able to 
form sub-clusters among those composite texture statis­
tics which were derived from the same class of base tex­
tures. For example, the map above has grouped togeth­
er statistics representing the composite images involving 
tree bark (MO and M22 near the center). Note, however, 
that these were not placed near the Vis Tex tree bark (TO, 
T2, T3 right of center). 

16 • 17 • 18 • 13 

• • • • • • • 

• 15 • • 31 • • 

• • • • • 11 10 

8 12 • 32 • • • 

• • • • • 6 • 

• • 14 • 7 • • 

34 • • • • • • 

29 • • • 5 36 • 

33 • 35 • • 9 • 

• 

• 

• 

• 

• 

8. Conclusion 

We believe that self-organizing maps have value for 
visualizing GLCM texture descriptors. They show prom­
ise for both clustering and visualizing statistical vectors, 
encoding visual similarity, and recognition of textures not 
previously "seen" by the algorithm. 

Future research should explore further the way that the 
SOM parameters - its dimensions and learning rate -
affect the quality and usefulness of the map produced. 
One approach that has the potential to help with overall 
map quality is to use an 18 or 27 dimensional vector to 
represent each image, containing the original nine sta­
tistics computed on GLCMs with two or three different 
displacement vectors. This might be especially useful in 
dealing with textures that are rotated or skewed. It would 
also be worthwhile to explore the use of alternate texture 
descriptors, such as autocorrelation functions, run­
length encoding descriptors, or wavelet statistics, to cap-

30 • • 20 • 23 

• • • 19 • • • • 

• • ,._. • • • 

• • • 28 21 

• 4 • • • • • 

• • • • • 25 • • 

• • 3 • • • 24 

• • • • • • • 

• • • • 22 • • 

0 • • • • • • 26 

Figure 9 - Fingerprint image texture statistics visualized 

A. Bark and B. Bark and C. Fabric and D. Fabric and 

fingerprint (MO) fingerprint (M22) fingerprint (M7) fingerprint (MS) 

Figure 10 - Some of the merged textures and fingerprints 
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T64 Tr - 16- .,-62'" "'F19 F23 - " F22~ "°7"•.~36 F27 F26 • 

• • • -T63 T28 • ~~~ • 

T10 • M2 • • M24 M23 ~21 • ~- · T61 

• • F30 • F34 • T19 M12 • ..;,~~:v _ M~ • 

F18 F13 • M3 • F29 • M37 F3 M31 M1 .. • M25 T9 
' " 

F17 F31 • M5 • FO F1 • • • M19 T45 T42 • 

F16 F12 F11 F10 • F2 F4 • MO • M7 M20 TO 

• F14 • • T72 M29 • M22 • M8 • T51 

FB F6 • F9 • M9 M35 M11 M10 T70 M13 T2 M32 

• F7 F5 • M14 M15 M36 • T27 T20 • T3 

T54 • • T21 T22 M27 • • • T17 • M16 T43 

T55 • T12 • T13 M17 T33 T24 T23 T4 M18 • T38 T39 T46 
~ 

Figure 11 - Results from a map trained with fingerprint textures (F), VisTex textures (T), and clustered finger-
print/texture images (M). The numbers identify specific images in the database. 

ture more of the texture's high- and low-level structure. 
We anticipate that this overlay could be especially use­
ful in improving the visualization of vectors representing 
textures that are very visually similar to one another. We 
believe that this technique may also have forensic poten­
tial for recognizing the presence of surface fingerprints. 

Footnotes 
' The authors would like to express their gratitude to 
Indiana University South Bend for their support with a 
Student I Mentor Academic Research Team (SMART) 
fellowship. 

2 There are several parameters involved in this process 
- the dimensions of the map, and the length of the first 
and second training periods as well as the neighborhood 
radii and training rates. There are no theoretically solid 
methods for choosing these parameters, so parameters 
are determined empirically. 

3 We realize that "visually similar" is imprecise; since 
visual texture is, to a large extent, based on human per­
ception, and since we are dealing with common, well 
recognized textures, we felt this was reasonable. 
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Figure 11 - One of the maps produced from the Training set. 
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