
INNOVATIONS IN LINGUISTICS EDUCATION 3. l (1983), 113-128.

NEW TOOLS FOR OLD TASKS:
AN INTRODUCTORY COURSE IN COMPUTATIONAL LINGUISTICS

1. Introduction

Karen Jensen

Computer Sciences Department
IBM Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

The course on which this paper is based was developed and taught at
Hofstra University, Hempstead, Long Island. Its primary innovation is
the introduction of NLP (Natural Language Processor; Heidorn 1972,
1975), a computer programming language that is especially designed for
hand! ing natural (human) languages. Because the statements of NLP are
phrase structure rules, the language is particularly congenial to
I inguists and linguistics students. It allows for explicit and direct
reflection of linguistic intuitions, and it implements them with the
speed and processing power of the computer.

This introductory curriculum has twin goals:

(a) to further the study of 1 inguistics and natural language,
by giving its students a new tool which will demand precision
and encourage insight;

(b) to further computational studies, by developing programs
that can do interesting and productive things with natural
language.

The course was centered around the study of syntax. However, NLP could
equally well be used as a vehicle for a course in semantics, morphology,
phonology, or any other rule-governed aspect of the human language
system.

Key to the success of this course is the realization that
programming is not alien to linguists, nor is the study of grammar alien
to computer scientists--although neither group may be conscious of these
facts. What a linguist does, when he writes or thinks about rules of
grammar, is, essentially, to build a subroutine designed to handle a
small part of the mental program that processes the language he is
working with. Part of what a computer scientist does, when he learns a
programming language, is to study grammar. It is easier for linguists

(1983/2017). In A. Bunger (Ed.)., Special volume: Reissue of Innovations in Linguistic Education Volume 3.
IULC Working Papers in Linguistics, Vol. 17, No. 4.

114 - Jensen

and computer scientists to recognize their kinship when they are
provided with a derivational 1 ink, such as NLP.

This paper first gives a brief overview of NLP, and then a series
of four graduated tasks designed to show how a generative (explicit)
study of language can be encouraged by working out problems on
a computer. Tasks such as these were used in the introductory course at
Hofstra. Finally, two appendices present a small computational grammar
and a brief outline for a 14-week semester course on English syntax and
NLP. One small caveat should be inserted here: it is impossible, in
this short paper, to do a thorough job of teaching NLP. Therefore some
unclarities in the exposition are bound to exist. Anyone who wants
further explanation is invited to write to the author.

2. Overview of NLP

Communication is generally understood to be a process of sending
and receiving information. Corresponding to this natural division of
the communication process, NLP has two different kinds of rules: rules
for decoding (receiving; inputting; parsing) and rules for encoding
(sending; outputting; producing}.

A simplified NLP DECODING rule looks like this:

(1) ADJ NP --> NP

This rule will take a string of adjectives preceding a noun phrase, and
combine the adjectives one by one with the noun phrase to create a
larger segment of type NP. Single nouns (1 ike balloons) can also be
called noun phrases, so the phrase two big red balloons will be decoded
by successive application of rule (1) as follows:

(2) two
ADJ

NP

big
ADJ

\
~NP

red ba 11 oons

ADJ"' ~NP

~NP

Notice that successive operations of rule (1) lead to the building of a
parse tree, which defines a syntactic structure for the phrase. The
whole purpose of decoding rules is to do just that: to take an incoming
string of lexical items and assign structure to them.

Jensen - 115

NLP decoding rules work from the bottom up and in a parallel
process, which means that they look at the input string as a whole
before constructing a final parse tree; that al 1 rules which might
conceivably apply to a string are applied; and that al 1 possible
structures, resulting from the application of any rule(s), are held in
readiness until the final tree has been constructed.

A typical NLP ENCODING rule looks like this:

(3) NP --> ADJ NP

This ru 1 e wi 11 take a noun phrase segment type and produce from it a
string of two elements, an adjective followed by a noun phrase. If
necessary, the same rule can apply to a given segment type more than
once:

(4)

ADJ

two

As can be seen by comparing (2) and (4) , encoding and decoding
rules are able to build equivalent structures. But their purposes are
very different. Decoding rules take strings of lexical items and turn
them into segment types (phrases, c 1 a uses, etc); encoding ru 1 es take
segment types and turn them into strings of lexical items. (The term
SEGMENT TYPE is intended to be vague here. It can encompass syntactic,
phonological, semantic, or any kind of information being worked with.)

Whereas decoding rules work bottom-up and in parallel, encoding
rules work top down and in serial, which means that they start with a
given segment type; apply to it the first listed rule that fits the
segment description; ignore any other later rules that might have been
applicable to that segment; and produce strings of lexical items from
left to right.

In the programming tasks that follow, only ENCODING rules will be
used. Encoding rules look more 1 ike the phrase-structure rules that
linguists are familiar with; they allow experimentation with rule
ordering; and they are easier for some students to comprehend since they
produce recognizable strings of text, rather than abstract structures.

116 - Jensen

There is so far no NLP textbook, In choosing the text for this
course, the teacher should use whatever introductory syntax book he is
comfortable with. However, that book should lend itself to the
computational approach, which is explicit and rigorous. In what
follows, we will assume the use of one such, by now fairly standard,
syntax text: Akmajian and Heny 1975.

3. The Random Generation of Noun Phrases Using Context-free Phrase
Structure Rules

Akmajian and Heny first discuss noun phrases on page 26, presenting
single groupings like a baby and those three sheep. As an early
programming exercise, it is interesting to try to write the NLP rules
that would produce such strings. One way to begin would be:

(5) NP -->
DET -->
ADJ -->
NOUN -->

DET ADJ
THOSE
THREE
SHEEP

NOUN

(The '#' mark forces a space in the output, and can be used to provide
for separation between words.)

But this set of rules will only produce the single string, those
three sheep. Even if we add many more rules for DET, ADJ and NOUN,
introducing more terminal symbols, our output will be limited because
NLP encoding rules choose only the FIRST applicable rule of any segment
type.

To avoid this problem, NLP provides for random selection among
those rules that have identical left-hand sides. If we add more rules
for determiners, adjectives, and nouns, we can get many noun phrases
consisting of three words: these good boys, the tall girl, a green
idea, and so on.

But how about noun phrases 1 ike a baby? In such strings there is
no adjective intervening between determiner and noun. Linguists allow
for optional elements by using parentheses or brackets, e.g.:
NP --> Det (Adj) Noun. But NLP does not use these abbreviatory
conventions. There are two ways to provide for optionality in NLP
ru 1 es. One is to write a second ru 1 e, omitting the opt i ona 1 segment
type:

(6) a)
b)

NP -->
NP -->

DET ADJ NOUN
DET NOUN

Jensen - 117

The other is to use the segment type 'NULL'. The NULL segment is
interpreted by NLP to mean nothing--not even a space:

(7) a)
b)
c)

NP --> DET ADJ NOUN
ADJ --> # THREE
ADJ --> NULL

Now we have rules to generate NPs like those three sheep and a
baby. Fine, but hardly a sufficient sampling of possible NPs in
English. What rules are missing? One fairly obvious weakness of the
rules in (5-7) is that none of them can handle theoretically infinite
strings of words. We know, for instance, that there is no definable
bound on the number of adjectives that can premodify a noun in English.
Yet 'DET ADJ NOUN' 1 imits us to one determiner and one adjective.

The way around this prob 1 em, of course, is to make use of
recursion. Consider these rules for adjective phrases (AP):

(8) a)
b)

AP --> ADJ AP
AP --> ADJ

The recursive rule (Ba) will allow for an infinitely long string of
adjectives. In fact, (8a) is unstoppable, and will loop forever, unless
a rule 1 ike (8b) is present as a possible choice for rewriting AP.
Putting a computer into an infinite loop is not recommended as a
homework exercise; but it certainly is a graphic demonstration of the
power of recursion.

Through careful description and constant questioning, students can
be brought to understand both how complex language is and how it can be
effectively modeled. Noun phrases are fertile ground for a beginning
task of this sort. Why is it, for example, that the two big red
balloons is far better than the red big two balloons? The commonly
accepted phrase structure rule, using the asterisk to denote an
indefinite number of adjectives:

(9) NP --> Det (Adj)* Noun

does not address this question.

Consider the following set of NLP encoding rules (and compare them
with Chomsky 1957:26):

118 - Jensen

(10) Encoding Ru 1 es

a) NP --> DET NPl
b) NP --> NPl
c) NPl --> NUM AP COL NOUN
d) AP --> ADJ AP
e) AP --> ADJ

f) DET --> # A
g) DET --> # THE
h) DET --> # THOSE
i) NUM --> NULL
j) NUM --> # ONE
k) NUM --> # TWO
1) NUM --> # THREE
m) ADJ --> # BIG
n) ADJ --> # SMALL
o) ADJ --> # COLORLESS
p) COL --> # RED
q) COL --> # GREEN
r) COL --> # HELIOTROPE
s) NOUN --> # BALLOON
t) NOUN --> # I DEAS
u) NOUN --> # SHEEP

The writing of this encoding rule set, or one very 1 ike it, can be
assigned to beginning students as an early step in elaborating the
interior structure of the simple English noun phrase. When run on the
computer, these rules will randomly produce such NPs as:

one small balloon
a one big small heliotrope sheep
*the three big colorless small big small small small colorless

small big small heliotrope balloon
colorless green ideas

and can serve as fuel for discussion of such questions as:

'What is linguistic generality?' ('How general is this rule set?')
'How should lexical items be introduced?' ('By rule, as here, or

some other way?')
'How should phenomena of agreement and concord be handled?' ('How

to guarantee that >'<the three •.. balloon wi 11 not occur? 1)

'What constitutes a class? a subclass? (of adjectives, for
example?)'

'What are the strengths and weaknesses of context-free phrase
structure rules such as those in (10)?'

Jensen - 119

4. The Generation of Specific Noun Phrases Using Context-Sensitive
Phrase Structure Rules

A programming 1 anguage that provided on 1 y context-free phrase
structure rules would be of 1 imited usefulness to 1 inguistics students.
Clearly, there must be a better way to write a grammar than by simply
enlarging the rule set in (10).

NLP uses rules that are basically context-free phrase structure
rules, but with two important additions. Arbitrary CONDITIONS on the
operation of a rule can be added in parentheses following the segment
name on the left of the arrow; and arbitrary STRUCTURE-BUILDING ACTIONS
can be stated in parentheses following each segment name on the right of
the arrow. These additions result in 'augmented' phrase structure
rules. The rule conditions make NLP equivalent to a context-sensitive
grammar; and the actions give it the full power of transformational, or
unrestricted rewriting, rules. So for example:

(11) NP(COLOR) --> ADJ(WORD=COLOR(NP)) NP(-COLOR)

Rule (11) says that a noun phrase which has a color connected with it (a
condition) can be rewritten as an adjective followed by a new NP. The
word associated with the adjective will be set equal to the color
associated with the NP (an action); and the new NP will have the color
removed from it (via another action}, since that color will have been
assigned to the premodifying adjective.

A rule like (11) suggests that segment types can have associated
with them various kinds of information. In fact, such collections of
information are central to the workings of NLP. The 1 inguistic
information which is manipulated by rules is carried in the form of
ATTRIBUTES, each attribute having an assigned VALUE. (For instance,
COLOR='RED' would mean that the attribute COLOR has been given the value
RED.) A collection of attributes can be grouped together to form a
RECORD. There are two types of records: NAMED RECORDS, which ho 1 d
static and largely idiosyncratic information (these can be thought of as
entries in a lexicon), and SEGMENT RECORDS, which hold dynamic
information and are created and destroyed during the production of text.
What we have been calling segment types, when they have attribute-value
information associated with them, are called segment records.

Rather than being introduced by rule as in (10), lexical items can
be stored as named records, with associated syntactic, phonological, and
semantic feature information. Collections of information larger than
sing 1 e words can be grouped together among the named records too.

120 - Jensen

Suppose that the phrases those three sheep and two big red balloons were
considered to be collections of information in the following manner:

(12) NAMED RECORDS
RECORD]
RECORD2

(SUP=' SHEEP' ,DET='THOSE' ,NUM='THREE')
(SUP='BALLOONS',COL='RED',NUM='TWO',SIZ='BIG')

For simplification, the values of attributes in (12) are treated as
words. They need not be. More primitive feature values can be used.
The words themselves can be located in some other named record, and be
retrieved by rule according to their feature makeup.

Attribute names in (12) are self-explanatory, except for SUP. SUP
is short for SUPERSET, and should really be used to store some kind of
hierarchical type information. However, for present purposes we are
using it to store the name of the head of the phrase.

As a second programming exercise, try writing the NLP rules, with
conditions and structure-building actions, that could operate on the
records in (12) to produce two noun phrases, those three sheep, and two
big red balloons. The idea here is to write a maximally general set of
rules, that will handle not only the information in (12), but also all
similar sets of information about entities that someone might want to
express in English noun phrases. Remember that order counts: starting
each time at the top of the list, the first encoding rule will be chosen
whose left-hand side matches the information contained in the record
being worked on. When your rules are ready, you can give a simple
command to the computer:

ENCODE NP RECORD] (or ENCODE NP RECORD2).

This command will cause the program to take the information in RECORDl
or RECORD2, look for the first NP rule whose conditions are met by that
information, apply the rule, and go on from there.

Two other NLP conventions are helpful here:

(a) The cent sign means to build record structure by copying a
record from the left side of the arrow into a new record ·created on
the right side: e.g., NP --> NOUN(¢NP) means to create a NOUN
record and copy into it all information from the NP record on the
left. If a segment type named on the right is the same as the one
on the left, an automatic copy will be made and there is no need
for the¢ sign.

Jensen - 121

(b) If there is no rule to operate on a segment record, a piece of
information from that record wi 11 be printed out. Present
conventions specify that what gets printed in this case will be the
value of the SUP attribute of that record.

The rules devised should look something 1 ike:

(13) a) NP(DET) --> # DET(SUP=DET(NP)) NP(-DET)
b) NP(NUM) --> # NUM(SUP=NUM(NP)) NP(-NUM)
c) NP(SIZ) --> # SIZ(SUP=SIZ(NP)) NP(-SIZ)
d) NP(COL) --> # COL(SUP=COL(NP)) NP(-COL)
e) NP --> # NOUN(¢NP)

Rule (13a) says that a NP record that has a DET attribute gets rewritten
as a DET record (whose SUP is set equal to the value of the DET
attribute of the NP), followed by a new NP (which starts as an automatic
copy of the NP on the left of the arrow, but is changed by having its
DET attribute removed). If this subtraction is not done, the new record
will qualify again and again for rule (13a), and you will have your
first example of infinitely looping recursion. Compare the insertion of
spaces ("#") here and in (10).

Moving down the 1 ist of rules, attributes of the record are
converted, one by one, into 1 ex i ca 1 i terns: first the determiner (if
called for), then a numeral, then a size attribute, then a color word,
and finally the head noun, which starts as the SUP of the original NP
record and is left after all other attributes have been removed. This
ordering of the rules guarantees that adjectives will be put out in
proper left-to-right order: two big red balloons and not '\red big two
balloons. (13) is also maximally general in the sense that any collection
of this sort of information about an entity can be given proper English
syntax by these rules. All possible attributes need not be present in
the record to start with; those rules whose conditions are met wi 11
apply, and the rest will not.

Given the records in (12) and the rules in (13), the command

ENCODE NP RECORD]

will produce the string those three sheep in the following way:

122 - Jensen

(14)

(13a): #

DET
SUP='THOSE'

(13b): #

NP
SUP='SHEEP
DET='THOSE'
NUM='THREE'

(l 3c) :

NP
SUP= I SHEEP I

NUM='THREE'

5, The Dative Movement Transformation

The transformational view of language, with its emphasis on precise
notation and the detailed interaction of rules, lends itself beautifully
to a computational approach. For each transformation, an NLP rule or
rules can be written that will produce strings which are related in the
desired manner. These ru 1 es might be thought of as programmed
transformations. Using the computer, it is possible to experiment
easily and decisively with rule interdependencies, ordering hypotheses,
lexical restrictions, constraints, and other transformational problems.
Of course, the bigger the problem, the bigger the rule set will have to
be.

In Chapters 5 and 6, Akmaj i an and Heny discuss a forma 1 ru 1 e that
relates such English sentences as Mary gave a book to the man, and Mary
gave the man a book (op cit.:183). The next programming task will be to
write rules that would account for this Dative Movement phenomenon as
discussed by Akmajian and Heny. We start, as before, with a collection
of named records that hold some basic information. Again, for
simplicity's sake, the information will be extremely sketchy and words
will be used as the values of attributes. It should be fairly easy to
see how this simplistic approach can be made more interesting via the
use of word classes, morphological processing, feature notation, and
more detailed syntactic deep structure data.

Jensen - 123

One mi nor modification has been made in these records: in NLP, it
is possible to omit the SUP attribute label and have it understood, if a
value is given in single quotes by itself. Where 'SHEEP' is printed,
the program understands SUP='SHEEP', and so on.

(15) NAMED RECORDS
RECORD!
RECORD2
RECORD3

('SHEEP', DET='THOSE' ,NUM='THREE')
('JOHN')
('GAVE' ,DO='RECORDl ', IO='RECORD2' ,DM='YES')

RECORD! is our old friend from above, the record that becomes, via
the rules in (13), those three sheep, RECORD2 has only one attribute, a
SUP, and so will produce the terminal string John when processed by the
NP rules. RECORD2 can be looked on as an entry for a lexical item.
RECORD3 has a SUP which will ultimately appear as gave, a DO attribute
that points to RECORD!, an 10 attribute that points to RECORD2, and a DM
attribute that is given a value of 'YES'. From the information
presented in RECORD3, we would·expect to generate a verb phrase with
gave as its head. If Dative Movement is involved, the two related verb
phrases,

gave those three sheep to John
gave John those three sheep

should be produced. What rules might be used?

(16) a)

b)

VP(D0,10,DM) --> VERB(¢VP,-DO,-IO,-DM)
NP(¢10(VP))
NP(¢DO(VP))

VP(D0,10) --> VERB(¢VP,-D0,-10)
NP(¢DO(VP))
PP(¢10(VP) ,PREP='TO')

If the command ENCODE VP RECORD3 is issued, rule (l6a) will take
RECORD3 and generate, from it, a verb which is a copy of the VP but with
all information except the SUP removed; then a noun phrase which is a
copy of the 10 attribute of the verb phrase; and finally another NP
which is a copy of the DO attribute: in effect, gave John those three
sheep. (Of course, the rules in (13) will also be needed to create the
NPs those three sheep and John.)

If we want to generate the related string without Dative Movement,
we instruct the program to drop the OM attribute from RECORD3:

RECORD3 (-DM)

and then issue ENCODE VP RECORD3 again. This time rule (l6a) will not
be used, since its condition requires the presence of a OM attribute.

124 - Jensen

Instead, the program wil I fall through to rule (16b), which requires
only the DO and 10 attributes. Rule (16b) generates the verb followed
by a noun phrase (those three sheep) and then a prepositional phrase,
which is a copy of the 10 attribute of the VP plus a new PREP attribute.
An additional rule is needed to encode the PP:

(17) PP --> PREP(SUP=PREP(PP)) NP(¢PP,-PREP)

(13), (16b) and (17) will generate gave those three sheep to John.

Not accounted for in these elementary rules are several important
facts about Dative Movement, e.g.:

only a certain class of verbs (of which give is representative) can
take an indirect object;

if the direct object (DO) is a pronoun, Dative Movement (DM) must
not apply.

Consider how facts such as these might be expressed in the rules of
(16).

6. Incorporating Case into the Grammar

It is essential to realize that, so long as you abide by the stated
conventions, the writing of NLP rules is a completely arbitrary process.
Rules that have been presented here have followed a fairly traditional
syntactic format. But it would be just as easy to write X-bar rules, or
lexical-functional rules, or relational grammar rules, or semantic
rules, or to test new ideas of constituent structure. To demonstrate
this fact, we look briefly at how notions of Case Grammar can be
incorporated into the rules we have worked with so far.

Verbs that undergo Dative Movement are verbs of transfer. These
require an Agent (the one who makes the transfer), a Receiver, and an
Object (the thing that gets transferred). The rules in (16) referred to
Indirect Object (10) and Direct Object (DO); but these attributes might
as well have been cal led Receiver (RECV) and Object (OBJT),
respectively. If we alter the records in (15) slightly,

(18) RECORD!
RECORD2
RECORD3
RECORD4

('SHEEP',DET='THOSE',NUM='THREE')
('JOHN')
('GAVE' ,AGNT='RECORD4',0BJT='RECORD1 I ,RECV='RECORD2 1)

('MARY')

change 10 to RECV and DO to OBJT in (16), and add one more rule--this

Jensen - 125

time at sentence level,

(19) SENT(AGNT) --> NP(¢AGNT(SENT)) VP(%SENT,-AGNT)

our program will be able to generate whole sentences of the form, Mary
gave those three sheep to John; Mary gave John those three sheep. By
further modifying the content of the records, a large number of
interesting sentences can be produced. Most of these sentences will
probably fall into the 'transfer' class; but note that the rules
developed here will also generate simple intransitive sentences (Mary
ran; John followed). Remember that if there is no rule to operate on a
record, the value of the SUP attribute will be printed out anyway. And
an interesting modification of the VP rules would al low for the
production of simple transitives, like John followed the sheep.

As a final programming task, try to augment and modify the rules in
(16) so as to produce, in an efficient way, a transitive verb phrase.

7. Summary

The careful and precise study of the structure of language--a study
which is central to the nature of linguistics--can be both enabled and
encouraged by adding a computational course to the 1 inguistics
curriculum. For maximum benefit, this course should offer a programming
language that is congenial to 1 inguists. NLP is such a language.
Students coming from different academic backgrounds have enjoyed the
course at Hofstra, which strives to make computational techniques more
familiar to linguistics students, and to make the nature of human
language more understandable to all.

8. Appendices

Following are two appendices. The first is a collection of NLP
records and rules developed in this paper. The rules have been modified
to be consistent with each other, and some additions have been made to
suggest possible solutions to the problems posed at the end of Sections
5 and 6. (The solutions offered here are by no means the only ones that
would work.) These rules form a very simple beginning for a
computational grammar. The second appendix presents a short outline for
a course, like the one discussed here, which serves to introduce both
English syntax and computational linguistics.

126 - Jensen

APPENDIX 1

('SHEEP' ,DET='THOSE' ,NUM='THREE')
('JOHN')

NAMED RECORDS
RECORDl
RECORD2
RECORD3
RECORD4

('GAVE' ,AGNT='RECORD4' ,OBJT='RECORDl ',RECV='RECORD2' ,DM)
('MARY')

ENCODING RULES
(1) SENT(AGNT) --> NP(¢AGNT(SENT)) VP(%SENT,-AGNT)
(2) VP(OBJT,RECV,DM, 'TRNSFR'. ISIN.VCLASS($(SEG)) ,HEAD(OBJT).

NE. I PRON I)
--> VP(-OBJT,-RECV,-DM)

NP(¢RECV(VP))
NP(¢0BJT(VP))

(3) VP (RECV) --> VP (-RECV)
PP(¢RECV(VP),PREP='TO')

(4) VP(OBJT) --> VP(-OBJT)
NP(¢0BJT(VP))

(5) VP --> # VERB (¢VP)
(6) pp --> # PREP(SUP=PREP(PP))

NP(¢PP,-PREP)
(7) NP(DET) --> # DET(SUP=DET(NP)) NP(-DET)
(8) NP(NUM) --> # NUM(SUP=NUM(NP)) NP(-NUM)
(9) NP(SIZ) --> # SIZ(SUP=SIZ(NP)) NP(-SIZ)
(10) NP (COL) --> # COL(SUP=COL(NP)) NP (-COL)
(11) NP --> # NOUN(¢NP)

W
EE

K
TO

PI
C

1
In

tr
o

d
u

ct
io

n
:

su
m

m
ar

iz
e

n
at

u
ra

l
la

n
g

u
ag

e
p

ro
ce

ss
in

g

to

d
at

e.

2
R

ev
ie

w
 o

f
tr

a
d

it
io

n
a
l

gr
am

m
ar

:
p

a
rt

s
o

f
sp

ee
ch

;
c
o

n
st

it
u

e
n

t
co

n
st

ru
ct

io
n

s;

le
v

el
s

o
f

gr
am

m
at

ic
al

a
n

a
ly

si
s.

3
R

ul
es

in

 g
en

er
al

:
re

g
u

la
r

ru
le

s
an

d
p

h
ra

se
 s

tr
u

c
tu

re

c
o

n
te

x
t-

fr
e
e

ru

le
s.

In

tr
o

d
u

ce
 N

LP

en
co

d
in

g

(A
PS

G
)

.

4
R

eg
ul

ar

an
d

PS
C

F
ru

le
s,

co

n
ti

n
u

ed
.

B
as

ic

E
n

g
li

sh

se
n

te
n

ce

st
ru

c
tu

re
.

R
an

do
m

g

en
er

at
io

n
 o

f
N

Ps

u
si

n
g

N

LP
.

5
C

o
n

te
x

t-
se

n
si

ti
v

e
ru

le
s.

A

ff
ix

 H
op

.
A

sp
ec

t
an

d
m

o
d

al
it

y
.

R
an

do
m

g

en
er

at
io

n
 o

f
in

tr
a
n

si
ti

v
e
 V

Ps
.

6
T

ra
n

sf
o

rm
at

io
n

al

ru
le

s:

ju
st

if
ic

a
ti

o
n

,
w

ha
t

th
ey

ca

n
do

.
P

as
si

v
e,

Q

,
N

eg
,

T
ag

,
D

O
-a

ux
i

1 i
a
ry

.
R

an
do

m

g
en

er
at

io
n

 o
f

S
s.

7
T

-r
u

le
s

co
n

ti
n

u
ed

:
re

fl
e
x

iv
iz

a
ti

o
n

,
im

p
er

at
iv

e,

T
H

E
R

E
-i

n-
se

rt
io

n
,

d
a
ti

v
e
,

p
a
rt

ic
le

 s
h

if
t.

O

rd
er

ed

g
en

er
at

io
n

o

f
N

Ps
.

tS
M

ID
-T

ER
M

EX

AM
.

9
S

em
an

ti
cs

:
c
o

n
st

ra
in

ts

on

d
e
le

ti
o

n
;

lo
g

ic
al

gr

am
m

ar
;

pr
ob

le
m

s
o

f
sc

o
p

e.

10

C
as

e
gr

am
m

ar
:

em
be

dd
in

g
o

f
p

ro
p

o
si

ti
o

n
s;

e
x

tr
a
p

o
si

ti
o

n
;

E
qu

i;

co
m

p
le

m
en

ti
ze

rs
.

11

T
he

le

x
ic

o
n

:
w

or
d

c
la

ss
e
s;

co

m
pu

te
r

p
o

et
ry

;
d

ev
er

b
al

fo

rm
s

(-
in

g
,

-e
d

 w
o

rd
s)

.

12

P
ar

ap
h

ra
se

 a
nd

am

b
ig

u
it

y
.

Z
er

o
d

e
ri

v
a
ti

o
n

.

13

G
en

er
at

in
g

la

n
g

u
ag

es

o
th

er

th
an

E

n
g

li
sh

.

Su
m

m
ar

iz
e;

p

re
p

ar
e

fo
r

fi
n

a
l;

p

re
p

ar
e

fo
r

fu
tu

re
.

14

A
SS

IG
N

M
EN

TS

R
ea

d
h

an
d

o
u

ts
.

H
an

do
ut

s.

H
an

do
ut

s.

A
km

aj
ia

n
&

 H
en

y,

C
h

.2
.

H
an

do
ut

s.

A
km

aj
ia

n
&

 H
en

y,

C
h

.3
.

H
an

do
ut

s.

H
an

do
ut

s.

A
km

aj
ia

n
&

 H
en

y,

C
h.

4.

H
an

do
ut

s.

A
km

aj
ia

n
&

 H
en

y,

C
h.

5.

H
an

do
ut

s.

H
an

do
ut

s.

A
km

aj
ia

n
&

 H
en

y,

C
h.

7.

H
an

do
ut

s.

A
km

aj
ia

n
&

 H
en

y,

C
h

.8
.

I
H

an
do

ut
s.

I

A
km

aj
ia

n
&

 H
en

y,

C
h

.9
.

H
an

do
ut

s.

H
an

do
ut

s.

W
or

k

I
w

or
k

'
w

or
k

I
en

jo
y

.

I

)>

"U

"U

rn

:z

C
l x N

'­ CD

::>

(f
>

CD

::>

N
 "

128 - Jensen

REFERENCES

Akmajian, Adrian and Frank Heny. 1975. An Introduction to the
Principles of Transformational Syntax. Cambridge, Massachusetts:
MIT Press.

Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton & Co.

Heidorn, G.E. 1972. Natural Language Inputs to a Simulation
Programming System. Technical Report NPS-55HD72101A. Monterey:
Naval Postgraduate School.

1975. Augmented Phrase Structure Grammars. In B.L. Nash-Webber
and R.C. Schank (eds.), Theoretical Issues in Natural Language
Processing. Association for Computational Linguistics.

