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The course on which this paper is based was developed and taught at 
Hofstra University, Hempstead, Long Island. Its primary innovation is 
the introduction of NLP (Natural Language Processor; Heidorn 1972, 
1975), a computer programming language that is especially designed for 
hand! ing natural (human) languages. Because the statements of NLP are 
phrase structure rules, the language is particularly congenial to 
I inguists and linguistics students. It allows for explicit and direct 
reflection of linguistic intuitions, and it implements them with the 
speed and processing power of the computer. 

This introductory curriculum has twin goals: 

(a) to further the study of 1 inguistics and natural language, 
by giving its students a new tool which will demand precision 
and encourage insight; 

(b) to further computational studies, by developing programs 
that can do interesting and productive things with natural 
language. 

The course was centered around the study of syntax. However, NLP could 
equally well be used as a vehicle for a course in semantics, morphology, 
phonology, or any other rule-governed aspect of the human language 
system. 

Key to the success of this course is the realization that 
programming is not alien to linguists, nor is the study of grammar alien 
to computer scientists--although neither group may be conscious of these 
facts. What a linguist does, when he writes or thinks about rules of 
grammar, is, essentially, to build a subroutine designed to handle a 
small part of the mental program that processes the language he is 
working with. Part of what a computer scientist does, when he learns a 
programming language, is to study grammar. It is easier for linguists 
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and computer scientists to recognize their kinship when they are 
provided with a derivational 1 ink, such as NLP. 

This paper first gives a brief overview of NLP, and then a series 
of four graduated tasks designed to show how a generative (explicit) 
study of language can be encouraged by working out problems on 
a computer. Tasks such as these were used in the introductory course at 
Hofstra. Finally, two appendices present a small computational grammar 
and a brief outline for a 14-week semester course on English syntax and 
NLP. One small caveat should be inserted here: it is impossible, in 
this short paper, to do a thorough job of teaching NLP. Therefore some 
unclarities in the exposition are bound to exist. Anyone who wants 
further explanation is invited to write to the author. 

2. Overview of NLP 

Communication is generally understood to be a process of sending 
and receiving information. Corresponding to this natural division of 
the communication process, NLP has two different kinds of rules: rules 
for decoding (receiving; inputting; parsing) and rules for encoding 
(sending; outputting; producing}. 

A simplified NLP DECODING rule looks like this: 

(1) ADJ NP --> NP 

This rule will take a string of adjectives preceding a noun phrase, and 
combine the adjectives one by one with the noun phrase to create a 
larger segment of type NP. Single nouns (1 ike balloons) can also be 
called noun phrases, so the phrase two big red balloons will be decoded 
by successive application of rule (1) as follows: 

(2) two 
ADJ 

NP 

big 
ADJ 

\ 
~NP 

red ba 11 oons 

ADJ"' ~NP 

~NP 

Notice that successive operations of rule (1) lead to the building of a 
parse tree, which defines a syntactic structure for the phrase. The 
whole purpose of decoding rules is to do just that: to take an incoming 
string of lexical items and assign structure to them. 
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NLP decoding rules work from the bottom up and in a parallel 
process, which means that they look at the input string as a whole 
before constructing a final parse tree; that al 1 rules which might 
conceivably apply to a string are applied; and that al 1 possible 
structures, resulting from the application of any rule(s), are held in 
readiness until the final tree has been constructed. 

A typical NLP ENCODING rule looks like this: 

(3) NP --> ADJ NP 

This ru 1 e wi 11 take a noun phrase segment type and produce from it a 
string of two elements, an adjective followed by a noun phrase. If 
necessary, the same rule can apply to a given segment type more than 
once: 

( 4) 

ADJ 

two 

As can be seen by comparing (2) and ( 4) , encoding and decoding 
rules are able to build equivalent structures. But their purposes are 
very different. Decoding rules take strings of lexical items and turn 
them into segment types (phrases, c 1 a uses, etc); encoding ru 1 es take 
segment types and turn them into strings of lexical items. (The term 
SEGMENT TYPE is intended to be vague here. It can encompass syntactic, 
phonological, semantic, or any kind of information being worked with.) 

Whereas decoding rules work bottom-up and in parallel, encoding 
rules work top down and in serial, which means that they start with a 
given segment type; apply to it the first listed rule that fits the 
segment description; ignore any other later rules that might have been 
applicable to that segment; and produce strings of lexical items from 
left to right. 

In the programming tasks that follow, only ENCODING rules will be 
used. Encoding rules look more 1 ike the phrase-structure rules that 
linguists are familiar with; they allow experimentation with rule 
ordering; and they are easier for some students to comprehend since they 
produce recognizable strings of text, rather than abstract structures. 
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There is so far no NLP textbook, In choosing the text for this 
course, the teacher should use whatever introductory syntax book he is 
comfortable with. However, that book should lend itself to the 
computational approach, which is explicit and rigorous. In what 
follows, we will assume the use of one such, by now fairly standard, 
syntax text: Akmajian and Heny 1975. 

3. The Random Generation of Noun Phrases Using Context-free Phrase 
Structure Rules 

Akmajian and Heny first discuss noun phrases on page 26, presenting 
single groupings like a baby and those three sheep. As an early 
programming exercise, it is interesting to try to write the NLP rules 
that would produce such strings. One way to begin would be: 

(5) NP --> 
DET --> 
ADJ --> 
NOUN --> 

DET ADJ 
# THOSE 
# THREE 
# SHEEP 

NOUN 

(The '#' mark forces a space in the output, and can be used to provide 
for separation between words.) 

But this set of rules will only produce the single string, those 
three sheep. Even if we add many more rules for DET, ADJ and NOUN, 
introducing more terminal symbols, our output will be limited because 
NLP encoding rules choose only the FIRST applicable rule of any segment 
type. 

To avoid this problem, NLP provides for random selection among 
those rules that have identical left-hand sides. If we add more rules 
for determiners, adjectives, and nouns, we can get many noun phrases 
consisting of three words: these good boys, the tall girl, a green 
idea, and so on. 

But how about noun phrases 1 ike a baby? In such strings there is 
no adjective intervening between determiner and noun. Linguists allow 
for optional elements by using parentheses or brackets, e.g.: 
NP --> Det (Adj) Noun. But NLP does not use these abbreviatory 
conventions. There are two ways to provide for optionality in NLP 
ru 1 es. One is to write a second ru 1 e, omitting the opt i ona 1 segment 
type: 

(6) a) 
b) 

NP --> 
NP --> 

DET ADJ NOUN 
DET NOUN 
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The other is to use the segment type 'NULL'. The NULL segment is 
interpreted by NLP to mean nothing--not even a space: 

(7) a) 
b) 
c) 

NP --> DET ADJ NOUN 
ADJ --> # THREE 
ADJ --> NULL 

Now we have rules to generate NPs like those three sheep and a 
baby. Fine, but hardly a sufficient sampling of possible NPs in 
English. What rules are missing? One fairly obvious weakness of the 
rules in (5-7) is that none of them can handle theoretically infinite 
strings of words. We know, for instance, that there is no definable 
bound on the number of adjectives that can premodify a noun in English. 
Yet 'DET ADJ NOUN' 1 imits us to one determiner and one adjective. 

The way around this prob 1 em, of course, is to make use of 
recursion. Consider these rules for adjective phrases (AP): 

(8) a) 
b) 

AP --> ADJ AP 
AP --> ADJ 

The recursive rule (Ba) will allow for an infinitely long string of 
adjectives. In fact, (8a) is unstoppable, and will loop forever, unless 
a rule 1 ike (8b) is present as a possible choice for rewriting AP. 
Putting a computer into an infinite loop is not recommended as a 
homework exercise; but it certainly is a graphic demonstration of the 
power of recursion. 

Through careful description and constant questioning, students can 
be brought to understand both how complex language is and how it can be 
effectively modeled. Noun phrases are fertile ground for a beginning 
task of this sort. Why is it, for example, that the two big red 
balloons is far better than the red big two balloons? The commonly 
accepted phrase structure rule, using the asterisk to denote an 
indefinite number of adjectives: 

(9) NP --> Det (Adj)* Noun 

does not address this question. 

Consider the following set of NLP encoding rules (and compare them 
with Chomsky 1957:26): 
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( 10) Encoding Ru 1 es 

a) NP --> DET NPl 
b) NP --> NPl 
c) NPl --> NUM AP COL NOUN 
d) AP --> ADJ AP 
e) AP --> ADJ 

f) DET --> # A 
g) DET --> # THE 
h) DET --> # THOSE 
i ) NUM --> NULL 
j ) NUM --> # ONE 
k) NUM --> # TWO 
1 ) NUM --> # THREE 
m) ADJ --> # BIG 
n) ADJ --> # SMALL 
o) ADJ --> # COLORLESS 
p) COL --> # RED 
q) COL --> # GREEN 
r) COL --> # HELIOTROPE 
s) NOUN --> # BALLOON 
t) NOUN --> # I DEAS 
u) NOUN --> # SHEEP 

The writing of this encoding rule set, or one very 1 ike it, can be 
assigned to beginning students as an early step in elaborating the 
interior structure of the simple English noun phrase. When run on the 
computer, these rules will randomly produce such NPs as: 

one small balloon 
a one big small heliotrope sheep 
*the three big colorless small big small small small colorless 

small big small heliotrope balloon 
colorless green ideas 

and can serve as fuel for discussion of such questions as: 

'What is linguistic generality?' ('How general is this rule set?') 
'How should lexical items be introduced?' ('By rule, as here, or 

some other way?') 
'How should phenomena of agreement and concord be handled?' ('How 

to guarantee that >'<the three •.. balloon wi 11 not occur? 1 ) 

'What constitutes a class? a subclass? (of adjectives, for 
example?)' 

'What are the strengths and weaknesses of context-free phrase 
structure rules such as those in (10)?' 
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4. The Generation of Specific Noun Phrases Using Context-Sensitive 
Phrase Structure Rules 

A programming 1 anguage that provided on 1 y context-free phrase 
structure rules would be of 1 imited usefulness to 1 inguistics students. 
Clearly, there must be a better way to write a grammar than by simply 
enlarging the rule set in (10). 

NLP uses rules that are basically context-free phrase structure 
rules, but with two important additions. Arbitrary CONDITIONS on the 
operation of a rule can be added in parentheses following the segment 
name on the left of the arrow; and arbitrary STRUCTURE-BUILDING ACTIONS 
can be stated in parentheses following each segment name on the right of 
the arrow. These additions result in 'augmented' phrase structure 
rules. The rule conditions make NLP equivalent to a context-sensitive 
grammar; and the actions give it the full power of transformational, or 
unrestricted rewriting, rules. So for example: 

(11) NP(COLOR) --> ADJ(WORD=COLOR(NP)) NP(-COLOR) 

Rule (11) says that a noun phrase which has a color connected with it (a 
condition) can be rewritten as an adjective followed by a new NP. The 
word associated with the adjective will be set equal to the color 
associated with the NP (an action); and the new NP will have the color 
removed from it (via another action}, since that color will have been 
assigned to the premodifying adjective. 

A rule like (11) suggests that segment types can have associated 
with them various kinds of information. In fact, such collections of 
information are central to the workings of NLP. The 1 inguistic 
information which is manipulated by rules is carried in the form of 
ATTRIBUTES, each attribute having an assigned VALUE. (For instance, 
COLOR='RED' would mean that the attribute COLOR has been given the value 
RED.) A collection of attributes can be grouped together to form a 
RECORD. There are two types of records: NAMED RECORDS, which ho 1 d 
static and largely idiosyncratic information (these can be thought of as 
entries in a lexicon), and SEGMENT RECORDS, which hold dynamic 
information and are created and destroyed during the production of text. 
What we have been calling segment types, when they have attribute-value 
information associated with them, are called segment records. 

Rather than being introduced by rule as in (10), lexical items can 
be stored as named records, with associated syntactic, phonological, and 
semantic feature information. Collections of information larger than 
sing 1 e words can be grouped together among the named records too. 
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Suppose that the phrases those three sheep and two big red balloons were 
considered to be collections of information in the following manner: 

( 12) NAMED RECORDS 
RECORD] 
RECORD2 

(SUP=' SHEEP' ,DET='THOSE' ,NUM='THREE') 
(SUP='BALLOONS',COL='RED',NUM='TWO',SIZ='BIG') 

For simplification, the values of attributes in (12) are treated as 
words. They need not be. More primitive feature values can be used. 
The words themselves can be located in some other named record, and be 
retrieved by rule according to their feature makeup. 

Attribute names in (12) are self-explanatory, except for SUP. SUP 
is short for SUPERSET, and should really be used to store some kind of 
hierarchical type information. However, for present purposes we are 
using it to store the name of the head of the phrase. 

As a second programming exercise, try writing the NLP rules, with 
conditions and structure-building actions, that could operate on the 
records in (12) to produce two noun phrases, those three sheep, and two 
big red balloons. The idea here is to write a maximally general set of 
rules, that will handle not only the information in (12), but also all 
similar sets of information about entities that someone might want to 
express in English noun phrases. Remember that order counts: starting 
each time at the top of the list, the first encoding rule will be chosen 
whose left-hand side matches the information contained in the record 
being worked on. When your rules are ready, you can give a simple 
command to the computer: 

ENCODE NP RECORD] (or ENCODE NP RECORD2). 

This command will cause the program to take the information in RECORDl 
or RECORD2, look for the first NP rule whose conditions are met by that 
information, apply the rule, and go on from there. 

Two other NLP conventions are helpful here: 

(a) The cent sign means to build record structure by copying a 
record from the left side of the arrow into a new record ·created on 
the right side: e.g., NP --> NOUN(¢NP) means to create a NOUN 
record and copy into it all information from the NP record on the 
left. If a segment type named on the right is the same as the one 
on the left, an automatic copy will be made and there is no need 
for the¢ sign. 
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(b) If there is no rule to operate on a segment record, a piece of 
information from that record wi 11 be printed out. Present 
conventions specify that what gets printed in this case will be the 
value of the SUP attribute of that record. 

The rules devised should look something 1 ike: 

( 13) a) NP(DET) --> # DET(SUP=DET(NP)) NP(-DET) 
b) NP(NUM) --> # NUM(SUP=NUM(NP)) NP(-NUM) 
c) NP(SIZ) --> # SIZ(SUP=SIZ(NP)) NP(-SIZ) 
d) NP(COL) --> # COL(SUP=COL(NP)) NP(-COL) 
e) NP --> # NOUN(¢NP) 

Rule (13a) says that a NP record that has a DET attribute gets rewritten 
as a DET record (whose SUP is set equal to the value of the DET 
attribute of the NP), followed by a new NP (which starts as an automatic 
copy of the NP on the left of the arrow, but is changed by having its 
DET attribute removed). If this subtraction is not done, the new record 
will qualify again and again for rule (13a), and you will have your 
first example of infinitely looping recursion. Compare the insertion of 
spaces ("#") here and in ( 10). 

Moving down the 1 ist of rules, attributes of the record are 
converted, one by one, into 1 ex i ca 1 i terns: first the determiner (if 
called for), then a numeral, then a size attribute, then a color word, 
and finally the head noun, which starts as the SUP of the original NP 
record and is left after all other attributes have been removed. This 
ordering of the rules guarantees that adjectives will be put out in 
proper left-to-right order: two big red balloons and not '\red big two 
balloons. (13) is also maximally general in the sense that any collection 
of this sort of information about an entity can be given proper English 
syntax by these rules. All possible attributes need not be present in 
the record to start with; those rules whose conditions are met wi 11 
apply, and the rest will not. 

Given the records in (12) and the rules in (13), the command 

ENCODE NP RECORD] 

will produce the string those three sheep in the following way: 
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( 14) 

(13a): # 

DET 
SUP='THOSE' 

(13b): # 

NP 
SUP='SHEEP 
DET='THOSE' 
NUM='THREE' 

( l 3c) : 

NP 
SUP= I SHEEP I 

NUM='THREE' 

5, The Dative Movement Transformation 

The transformational view of language, with its emphasis on precise 
notation and the detailed interaction of rules, lends itself beautifully 
to a computational approach. For each transformation, an NLP rule or 
rules can be written that will produce strings which are related in the 
desired manner. These ru 1 es might be thought of as programmed 
transformations. Using the computer, it is possible to experiment 
easily and decisively with rule interdependencies, ordering hypotheses, 
lexical restrictions, constraints, and other transformational problems. 
Of course, the bigger the problem, the bigger the rule set will have to 
be. 

In Chapters 5 and 6, Akmaj i an and Heny discuss a forma 1 ru 1 e that 
relates such English sentences as Mary gave a book to the man, and Mary 
gave the man a book (op cit.:183). The next programming task will be to 
write rules that would account for this Dative Movement phenomenon as 
discussed by Akmajian and Heny. We start, as before, with a collection 
of named records that hold some basic information. Again, for 
simplicity's sake, the information will be extremely sketchy and words 
will be used as the values of attributes. It should be fairly easy to 
see how this simplistic approach can be made more interesting via the 
use of word classes, morphological processing, feature notation, and 
more detailed syntactic deep structure data. 
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One mi nor modification has been made in these records: in NLP, it 
is possible to omit the SUP attribute label and have it understood, if a 
value is given in single quotes by itself. Where 'SHEEP' is printed, 
the program understands SUP='SHEEP', and so on. 

( 15) NAMED RECORDS 
RECORD! 
RECORD2 
RECORD3 

('SHEEP', DET='THOSE' ,NUM='THREE') 
('JOHN') 
('GAVE' ,DO='RECORDl ', IO='RECORD2' ,DM='YES') 

RECORD! is our old friend from above, the record that becomes, via 
the rules in (13), those three sheep, RECORD2 has only one attribute, a 
SUP, and so will produce the terminal string John when processed by the 
NP rules. RECORD2 can be looked on as an entry for a lexical item. 
RECORD3 has a SUP which will ultimately appear as gave, a DO attribute 
that points to RECORD!, an 10 attribute that points to RECORD2, and a DM 
attribute that is given a value of 'YES'. From the information 
presented in RECORD3, we would·expect to generate a verb phrase with 
gave as its head. If Dative Movement is involved, the two related verb 
phrases, 

gave those three sheep to John 
gave John those three sheep 

should be produced. What rules might be used? 

(16) a) 

b) 

VP(D0,10,DM) --> VERB(¢VP,-DO,-IO,-DM) 
NP(¢10(VP)) 
NP(¢DO(VP)) 

VP(D0,10) --> VERB(¢VP,-D0,-10) 
NP(¢DO(VP)) 
PP(¢10(VP) ,PREP='TO') 

If the command ENCODE VP RECORD3 is issued, rule (l6a) will take 
RECORD3 and generate, from it, a verb which is a copy of the VP but with 
all information except the SUP removed; then a noun phrase which is a 
copy of the 10 attribute of the verb phrase; and finally another NP 
which is a copy of the DO attribute: in effect, gave John those three 
sheep. (Of course, the rules in (13) will also be needed to create the 
NPs those three sheep and John.) 

If we want to generate the related string without Dative Movement, 
we instruct the program to drop the OM attribute from RECORD3: 

RECORD3 (-DM) 

and then issue ENCODE VP RECORD3 again. This time rule (l6a) will not 
be used, since its condition requires the presence of a OM attribute. 



124 - Jensen 

Instead, the program wil I fall through to rule (16b), which requires 
only the DO and 10 attributes. Rule (16b) generates the verb followed 
by a noun phrase (those three sheep) and then a prepositional phrase, 
which is a copy of the 10 attribute of the VP plus a new PREP attribute. 
An additional rule is needed to encode the PP: 

(17) PP --> PREP(SUP=PREP(PP)) NP(¢PP,-PREP) 

(13), (16b) and (17) will generate gave those three sheep to John. 

Not accounted for in these elementary rules are several important 
facts about Dative Movement, e.g.: 

only a certain class of verbs (of which give is representative) can 
take an indirect object; 

if the direct object (DO) is a pronoun, Dative Movement (DM) must 
not apply. 

Consider how facts such as these might be expressed in the rules of 
( 16). 

6. Incorporating Case into the Grammar 

It is essential to realize that, so long as you abide by the stated 
conventions, the writing of NLP rules is a completely arbitrary process. 
Rules that have been presented here have followed a fairly traditional 
syntactic format. But it would be just as easy to write X-bar rules, or 
lexical-functional rules, or relational grammar rules, or semantic 
rules, or to test new ideas of constituent structure. To demonstrate 
this fact, we look briefly at how notions of Case Grammar can be 
incorporated into the rules we have worked with so far. 

Verbs that undergo Dative Movement are verbs of transfer. These 
require an Agent (the one who makes the transfer), a Receiver, and an 
Object (the thing that gets transferred). The rules in (16) referred to 
Indirect Object (10) and Direct Object (DO); but these attributes might 
as well have been cal led Receiver (RECV) and Object (OBJT), 
respectively. If we alter the records in (15) slightly, 

(18) RECORD! 
RECORD2 
RECORD3 
RECORD4 

('SHEEP',DET='THOSE',NUM='THREE') 
('JOHN') 
('GAVE' ,AGNT='RECORD4',0BJT='RECORD1 I ,RECV='RECORD2 1 ) 

('MARY') 

change 10 to RECV and DO to OBJT in (16), and add one more rule--this 
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time at sentence level, 

(19) SENT(AGNT) --> NP(¢AGNT(SENT)) VP(%SENT,-AGNT) 

our program will be able to generate whole sentences of the form, Mary 
gave those three sheep to John; Mary gave John those three sheep. By 
further modifying the content of the records, a large number of 
interesting sentences can be produced. Most of these sentences will 
probably fall into the 'transfer' class; but note that the rules 
developed here will also generate simple intransitive sentences (Mary 
ran; John followed). Remember that if there is no rule to operate on a 
record, the value of the SUP attribute will be printed out anyway. And 
an interesting modification of the VP rules would al low for the 
production of simple transitives, like John followed the sheep. 

As a final programming task, try to augment and modify the rules in 
(16) so as to produce, in an efficient way, a transitive verb phrase. 

7. Summary 

The careful and precise study of the structure of language--a study 
which is central to the nature of linguistics--can be both enabled and 
encouraged by adding a computational course to the 1 inguistics 
curriculum. For maximum benefit, this course should offer a programming 
language that is congenial to 1 inguists. NLP is such a language. 
Students coming from different academic backgrounds have enjoyed the 
course at Hofstra, which strives to make computational techniques more 
familiar to linguistics students, and to make the nature of human 
language more understandable to all. 

8. Appendices 

Following are two appendices. The first is a collection of NLP 
records and rules developed in this paper. The rules have been modified 
to be consistent with each other, and some additions have been made to 
suggest possible solutions to the problems posed at the end of Sections 
5 and 6. (The solutions offered here are by no means the only ones that 
would work.) These rules form a very simple beginning for a 
computational grammar. The second appendix presents a short outline for 
a course, like the one discussed here, which serves to introduce both 
English syntax and computational linguistics. 
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APPENDIX 1 

('SHEEP' ,DET='THOSE' ,NUM='THREE') 
('JOHN') 

NAMED RECORDS 
RECORDl 
RECORD2 
RECORD3 
RECORD4 

('GAVE' ,AGNT='RECORD4' ,OBJT='RECORDl ',RECV='RECORD2' ,DM) 
('MARY') 

ENCODING RULES 
( 1 ) SENT(AGNT) --> NP(¢AGNT(SENT)) VP(%SENT,-AGNT) 
(2) VP(OBJT,RECV,DM, 'TRNSFR'. ISIN.VCLASS($(SEG)) ,HEAD(OBJT). 

NE. I PRON I) 
--> VP(-OBJT,-RECV,-DM) 

NP(¢RECV(VP)) 
NP(¢0BJT(VP)) 

(3) VP (RECV) --> VP (-RECV) 
PP(¢RECV(VP),PREP='TO') 

(4) VP(OBJT) --> VP(-OBJT) 
NP(¢0BJT(VP)) 

(5) VP --> # VERB (¢VP) 
(6) pp --> # PREP(SUP=PREP(PP)) 

NP(¢PP,-PREP) 
(7) NP(DET) --> # DET(SUP=DET(NP)) NP(-DET) 
(8) NP(NUM) --> # NUM(SUP=NUM(NP)) NP(-NUM) 
(9) NP(SIZ) --> # SIZ(SUP=SIZ(NP)) NP(-SIZ) 
( 10) NP (COL) --> # COL(SUP=COL(NP)) NP (-COL) 
( 11 ) NP --> # NOUN(¢NP) 
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