
	 105

MASLO: A MOBILE LEARNING DEVELOPMENT SYSTEM
Rovy Branon1, Moses Wolfenstein2, & Cathrin Weiss2
1University of Washington; 2University of Wisconsin—Extension

The Mobile Access to Supplementary Learning Objects
(MASLO) is an open source software kit developed by the
Advanced Distributed Learning Co-Laboratory (AADLC) at
the University of Wisconsin-Extension. The MASLO kit is
designed to provide the components for content authoring
and delivery on Apple iOS® and Google Android® smart
phones.This project built on work from an earlier AADLC
effort to develop a high school test preparation mobile
application called Revu4u (Review for You). In that project,
AADLC team members successfully created a technical
framework for delivering smart phone enabled instructional
content. While the technical components functioned as
intended, virtually no time was spent in Revu4u on creating
usable interfaces. Additionally, the Revu4u project was
limited in scope to only deliver multiple-choice questions
and feedback. The MASLO project focused on usability
rather than technological capability and was designed as
a more comprehensive instructional content authoring
environment. In this article, the authors will describe MASLO
as a design case. The purpose is to clearly describe the kit
itself, critical design decisions, and the context and situations
relevant to understanding the decisions made. Relevant
Revu4u processes and outcomes are briefly described as a
precedent for MASLO. MASLO is a living, open source project,
and this case describes the development of the kit up to
August 2012.

Rovy Branon is the Vice Provost for Continuum College at the
University of Washington. Previously, Rovy was the Associate Dean
and Executive Director of the Academic Advanced Distributed
Learning Co-Lab at the University of Wisconsin-Extension. His
research includes expanding access to higher education through
technology.

Moses Wolfenstein is the Co-director of the Academic Advanced
Distributed Learning Co-Lab at University of Wisconsin-Extension.
Moses’ research interests include game-based learning
environments and design.

Cathrin Weiss was previously a Senior Software Engineer at the
Academic Advanced Distributed Learning Co-Lab at the University
of Wisconsin-Extension.

INTRODUCTION
This design case describes the development of a platform
for mobile learning rather than a single instructional inter-
vention. The first section details the context of the case,
including goals, location, philosophy, precedent work, time,
budget, and personnel. The second section describes the
MASLO system, including components of the system and
key design decisions. The final section is a brief discussion of
the current state of MASLO and the relevance of MASLO as a
design case.

DESIGN CONTEXT
In 2011, The Academic Advanced Distributed Learning
Co-Laboratory (AADLC) at the University of Wisconsin-
Extension was awarded a research contract to develop a
mobile learning platform by the U.S. Department of Defense
(DoD). The contract was funded through a Broad Agency
Announcement (BAA) call for research. In that call (BAA:
W91CRB-08-R-007, 2010) the DoD described an interest in
the following mobile learning capabilities:

Mobile devices free learners from traditional learning
environments and allow greater knowledge sharing in
social environments. There is a need at ADL to determine
the practical relationship between distributed learning and
knowledge sharing, and how mobile devices factor into that
relationship, especially if SCORM is required. Of particular
interest is how structured learning content that is based on
predetermined product design requirements is maintained,
updated then distributed to mobile devices at the time of
need.

A subsequent series of conversations between the AADLC
and the DoD program manager indicated that a proposal

Copyright © 2016 by the International Journal of Designs for Learning,
a publication of the Association of Educational Communications and
Technology. (AECT). Permission to make digital or hard copies of portions of
this work for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page in print
or the first screen in digital media. Copyrights for components of this work
owned by others than IJDL or AECT must be honored. Abstracting with
credit is permitted.

2016 | Volume 7, Issue 3 | Pages 105-123

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 106

to extend a previous AADLC mobile system project would
fit within these requirements. The new effort was called
Mobile Access to Supplemental Learning Objects (MASLO).
The name was created to reflect a belief that mobile phones
might be best used to support supplemental instruction
rather than serving as a primary mechanism for course
delivery. Additionally, small, bite-sized course elements were
the cornerstone of the learning object approaches being
developed by the Advanced Distributed Learning (ADL)
initiative. MASLO is an ongoing open source project, but this
design case will describe the funded period of performance
in the research contract. Work began in March 2011 and the
initial prototype was completed in August 2012.

Location and Environment

The Academic Advanced Distributed Learning Co-Laboratory
(AADLC) is a learning technology research group at the
University of Wisconsin-Extension. The AADLC was origi-
nally formed in 2000 as a collaborative effort between the
University of Wisconsin System and the Wisconsin Technical
Colleges System. It was chartered as an official node in the
U.S. Department of Defense ADL Initiative. Multiple labs
representing different sectors were created at other locations
(e.g., the Workforce ADL Co-Laboratory at the University
of Memphis). In the early 2000’s the ADL Initiative focused
on the development of technical standards to support
e-learning. The most well-known of these efforts is called
the Sharable Content Reference Model or SCORM. As the
academic lab in the ADL effort, the AADLC at the University
of Wisconsin advocates the use of e-learning standards in
K-20 settings. In the mid-2000s the role of the AADLC began
to include research on other emerging learning technologies
including the use of games, mobile systems, and augmented
reality. These efforts were funded under various grant efforts
and were often led by faculty at the UW-Madison in collabo-
ration with other institutions (e.g., MIT, Harvard, etc.). The U.S.
Department of Defense also continued to provide funding to
the AADLC for a variety of technical tasks and white papers.
For several years, the AADLC also operated under a funding
agreement with the Florida Virtual School as a research and
development partner. It is relevant to note that while proj-
ects were often instantiated through training and education
on a topic, most of this work is related to the development
or design of technologies to support learning rather than
on specific instructional interventions (e.g., development of
courses). In other words, the AADLC is not an instructional
design production shop but is focused on testing emergent
technical standards and developing platforms to support
instructional design work. Some examples of these platforms
include technical standards (e.g., SCORM, xAPI), mobile
applications, and educational games.

In the latter part of the decade, the AADLC became part
of the University of Wisconsin-Extension’s Continuing
Education, Outreach, and E-learning (CEOEL) division. The

connection to the U.S. DoD ADL Initiative remains, and the
majority of work for AADLC continues to be software devel-
opment. One significant difference, however, is an increased
effort to connect research projects to instructional needs of
the University of Wisconsin-Extension, which includes online
degree development, agricultural outreach, and community
education. About the same time the AADLC started to
change its direction, the U.S. DoD ADL Initiative launched
new research efforts on mobile learning. MASLO is one of
those new efforts.

Team Members

The team that worked on MASLO included several positions.
More about the team member views, impact of turnover,
and decisions are included throughout the case. When
the project began, all team members were men and from
the United States. When the mobile software developer
left the research lab, a woman, originally from Germany,
replaced him. Team members ranged in age from 25 to 45
years and all had at least a college education. The principal
investigator and the additional researcher both hold a
Ph.D. (in Instructional Systems Technology and Educational
Leadership and Policy Analysis, respectively). The following
list provides an overview of the project positions and their
respective time allocations:

•	 Mobile software developer/programmer—allocated at
100%.

•	 A second programmer—allocated at 50%.

•	 Principal investigator—committed 25%.

•	 Interface designer (graphic artist)—allocated at 25%.

•	 Additional researcher/usability role—was added outside
of the project budget and worked approximately 60% of
his time for the duration of the project.

MASLO Project Goal

The primary goal of this project was to develop a prototype
mobile learning publishing platform that included the
following components and features. Some of these features
were related to client contractual requirements and others
were the result of precedent work, both of which are
described later in the case.

•	 An authoring tool for creating mobile-friendly content.

•	 iOS (Apple) and Android (Google) applications for
delivering the content.

•	 A separate server for storing content so that content
could be authored once and then downloaded and
formatted by the mobile applications.

•	 Offline capability: All content (once downloaded) must
be available to the learner even if no internet connection
is available.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 107

•	 Open source: the code and documentation must be
made available for free download and be open to
modification.

•	 Ensure a “dual purpose” use for both military training and
K-20 education.

Design Philosophy

The design philosophy was not explicitly stated or discussed
by the team at the beginning of the project but is implied
through the project goals and outcomes. Later sections
of this design case describe the team members’ roles and
views. One emergent philosophical view held by all the team
members is that technology should help improve access to
educational opportunities. The word “access”, in this case,
means more than the ability for an end user to acquire
educational materials or instructional experiences. Access
also means that those with knowledge have access to easily
usable tools to enable sharing among a global audience of
learners depending on the topic area.

More broadly, improving access includes a myriad of other
issues related to modern computing technology, including
an awareness of network access constraints for those unable
to afford broadband for economic reasons and those disen-
franchised by simple lack of network capability in many rural
areas. Access also includes access to the designed product
itself through open source licenses rather than locking it
down through a patent or pay licensing process (Branon &
Wolfenstein, 2013). Evidence of the team’s belief that access
is a primary requirement is found in many of the MASLO
design decisions.

A parallel philosophical commitment that was implemented
implicitly was the view that parsimony in design was essen-
tial to the success of the project. Although the team did not
consciously invoke the tradition of minimalist design (e.g.,
Carroll, 1990), the specific history of the project combined
a commitment to usability principles (e.g., Nielsen, 1999;
Norman, 1988) and a general inspiration from contemporary
website and software design (e.g., Maeda, 2006) to advance
an aim of simplifying interaction and user experience as
much as possible. Late in the project the team arrived at the
conclusion that parsimonious design dovetailed with the
notion of access as an essential objective in the creation of
a new technology. By designing parsimoniously, the final
product was more accessible to more users.

Precedent Work: Revu4u

MASLO was funded and conceived on the basis of previous
mobile technology work at the AADLC. Revu4u is a high
school test preparation app the AADLC developed for Florida
Virtual School (FLVS). The goal of Revu4u was to help FLVS
test the “mobile learning application development waters”
on a small budget. Limiting the scope to test preparation
kept Revu4u financially viable. Revu4u was also the first
mobile development project for the AADLC and we wanted
to test several technical possibilities. Revu4u was successful
as a technical test bed and demonstrated that content for a
native iPhone® application could download and run content
stored in a third-party “cloud” database (see Figure 1). While
such architectures are common today, this was a relatively
novel approach in 2009 (Branon, Wolfenstein, & Raasch,
2012).

FIGURE 1. An example of a typical Revu4u multiple-choice question screen.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 108

The complete details of Revu4u are beyond the scope of this
article but that effort directly influenced numerous MASLO
design decisions. Specific Revu4u influences are described
throughout this case.

Other 2010 Mobile Learning Technologies

In early 2010, while the team was developing the MASLO
Broad Agency Announcement proposal, learning man-
agement system providers were beginning to offer mobile
applications allowing students access to online courses
through their smart phones. These apps were often less-
than-full-featured versions of the learning management
system but were designed to support full courses.

Other stand-alone proprietary mobile learning products
available at the time (e.g., LearnCast.com) were also devel-
oped with the idea that people wanted to create full courses
for delivery to mobile phones. In early team discussions,
the authors did not want to replicate this full course model.
The team believed that there was a need for a lightweight
application that could supplement face-to-face or online
instructional environments. In other words, we did not want
to shrink a course and put it on a mobile device. We wanted
instructors to think about parts of courses or even unique
additions to courses that might be well-suited for delivery on
a mobile device.

This desire to focus on a subset of instructional delivery was
based, in part, on the personal experiences the design team
had with their own mobile technology use. Team members
felt that mobile apps worked best when they focused on
a small number of features. Recognizable apps available in
2009-2010 included Facebook, Evernote, Dropbox, and Yelp.
The team discussed how these mobile apps were often more
limited in scope than their more full-featured web-based
versions. In some cases it was clear to the team that the apps
were only limited for technical reasons and not by design
but some cases, like Todo, were intentionally sparse. The
reasoning was that mobile devices could have any number
of applications and therefore each individual app could be
relatively simple. The design of MASLO would allow rapid
development of small mobile learning applications, rather
than a comprehensive learning content system.

Additionally, many of the available proprietary mobile
learning platforms locked content into a particular service
or device. The developers wanted to separate content from
a particular mobile application and ensure portability of
content out of a MASLO database. The team believed these
considerations were differentiators for an open source
system in a growing field of mobile learning applications.

Project Timeline

Originally proposed in May 2010, the MASLO project was
approved by the U.S. Department of Defense in September

2010. Contracts were signed and executed between the
University of Wisconsin and the U.S. Federal Government
in April 2011. At that time, the project was approved as a
one-year research and development effort with an expected
end date of March 2011. A turnover in personnel required a
six-month no-cost extension and the final deliverables were
completed by August 30, 2012.

While a one-year timeline might seem relatively short for the
development of a fully functional prototype content creation
platform, the changes in the mobile technology landscape
over the total two years from proposal writing to completion
were dramatic. The design team felt constrained to stay
within the project guidelines. Some of these tensions will be
evident in MASLO design decisions.

Budget

MASLO was funded with a $308,000 contract award. Most
of the money was allocated to pay for software developers
(35%), other funding paid a partial buyout of the principal
investigator’s time (10%), an interface designer (20%), and
student time (5%). The balance of the grant was for required
institutional administrative overhead, travel, and technology
acquisition. There was no requirement for matching funds
or effort, but additional university human resources were
used on an ad hoc basis because the software was viewed as
potentially beneficial to the institution.

MASLO: CASE OVERVIEW AND CORE DESIGN
FEATURES
MASLO is best described as a kit for developing mobile
learning applications. The MASLO kit contains three major
pieces: a content development tool that runs on a personal
computer, a web or “cloud” storage component, and mobile
applications for learners to consume content on iOS® and
Android® devices (see Figure 2). MASLO is not a single app or
service. The raw code for the apps, the web server, and the
content tool are available for developers to download and
then modify for their own institution. The code is available
here: http://academiccolab.org/maslo

Intended Audience and Contexts of Practice

MASLO is intended to be a platform for creating content
rather than instructional content for a particular audience.
The intended audience is content experts, not professional
instructional designers or developers. While nothing
excludes designers from using the tool, the lack of sophisti-
cated tools may create frustration for power users.

While the context for the use of MASLO is open, the system
requires access to a laptop or desktop computer and a
mobile device for testing. Requiring both of these limits
the use to those with access to these tools. The authors are
aware that this might limit use in places where users do not

http://academiccolab.org/maslo

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 109

have access to computers but, at the time the system was in
development, creating an authoring tool that could run on a
mobile device was not within the scope.

How MASLO Works

Content authors (faculty, teachers, and trainers) use a simple
computer-based authoring tool to create instructional
content packages. The authoring tool, which will be de-
scribed later in the case, is more simplified than the online
learning tools in a learning management system or even a
word processor. Content authors upload these packages to
a web host so that they are available for download by the
learners. A learner downloads a mobile application to his
or her device. Once in the application, learners see a list of
downloadable content packages stored on the web server.
The learner selects which content packs to download to
their device and then accesses them at any time, whether
connected to the internet or not.

The possible types of content inside a package include
text, video, audio, images, and multiple-choice quizzes. The
quizzes are not scored or graded but are intended to provide
the learner with a way to test their knowledge.

High-Level Platform Design Decisions

The MASLO contractual requirements dictated several design
decisions. These included:

•	 Open source

•	 Author once and view on multiple devices

•	 Offline content access

•	 Simplified mobile content authoring environment

Open source

The decision to make all of the code available as open
source was both pragmatic and driven by a decision to make
the product as accessible as possible. For projects funded
through the U.S. Federal Government, there is an increasing
bias to fund software that is developed under open source
licenses. While not a specific requirement, the idea that the
original software is GOTS (Government off-the-shelf) means
that the Federal government can use the software without
additional licensing. Such preferences do not preclude
patenting parts or the entire product, but declaring in the
research proposal that the code would be released as open
source eliminated a number of contractual complexities.

Another pragmatic aspect of choosing to make the product
open source is that the design team was able to use other
products available under similar license arrangements. As
one brief example, the developers embedded the open
source video player called VLC into the MASLO authoring
tool. If MASLO was not open source, the VLC license would
not have permitted free use within the tool (VideoLAN,
2015).

Beyond the more pragmatic aspects of creating the product
as open source, the authors believe that giving full access to
the code allows others to take joint ownership, breaks down

FIGURE 2. This diagram shows the three components of the MASLO ecosystem.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 110

some economic barriers for its use, and encourages broader
adoption and therefore survival beyond the funding period.

Author once and view on multiple devices

According to the British Broadcasting Corporation, the U.S.
DoD is the largest employer in the world with 3.2 million
service members and civilian support personnel (BBC News,
2012). This number does not include all of the associated
contractors. Training solutions for DoD employees need
to scale and work with as many devices as possible. As a
part of the contract requirements, the AADLC stated that
the content would be stored in such a way that it could be
rendered to different devices without having to create the
content multiple times. This same requirement was also
helpful in meeting MASLO’s dual mission intent to support
K-20 educational settings.

Offline content access

Another requirement was the need to make all content avail-
able on the mobile device itself. Content could be stored on
a central server but once downloaded to the mobile device
it had to be fully functional without requiring a connection
back to the server. The nature of service members’ jobs to
work in remote areas was a key driver for this requirement,
but the AADLC team also saw this need for educational
institutions serving remote students in the U.S. and more

specifically in rural Wisconsin (Branon
& Wolfenstein, 2013).

Simplified mobile content authoring
environment

This requirement was less clearly
defined because it was not a tech-
nical requirement per se. Both the
AADLC and the DoD wanted a way
to get content to mobile devices that
did not require the subject matter
expert, professor, or teacher to have
programming experience. Efforts to
meet this requirement are described
in detail in the rest of the case.

MASLO: Authoring Tool

The development team began the
MASLO project by designing the
authoring tool. Choosing to start with
that part of the three-component
system was a key design decision
driven by work on the previously
described Revu4u project. The
Revu4u effort was a proof-of-concept
to help the client, Florida Virtual
School, determine whether the use

of mobile technology was feasible. Developing an authoring
tool was out of scope for a technological proof-of-concept
and all content in Revu4u was hand-coded by programmers.
The Revu4u technology worked well enough that the client
decided to move immediately from prototype to

Implementation (see Figure 3). The lack of resources to
expand the project scope, however, meant that an authoring
tool had to be hastily assembled. No user testing was done
on the Revu4u authoring tool and only a modicum of quality
assurance was completed. Revu4u still exists in the Apple
app store but little content was added after the prototype
work ended. While no formal Revu4u failure analysis was
conducted, anecdotal conversations with the client and
some of the users indicated that the incomplete authoring
tool was a limitation to widespread adoption.

One key benefit of the Revu4u project was that the techno-
logical approach did work. This approach included separat-
ing content from the mobile application (iPhone only) by
storing it on a hosted service (the service was Amazon Web
Services). This functioning prototype was sufficient to gain
funding through the U.S. Department of Defense for the
project which would become MASLO. Since the Academic
ADL Co-lab knew the technology architecture worked, we
decided to focus the MASLO design effort on the greatest
area of weakness. We started by developing the authoring

FIGURE 3. A screen capture of the Revu4u multiple-choice authoring tool (precedent work).

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 111

tool and then worked our way
back into the mobile device
applications and storage system
creation. This decision was further
reinforced when the lead mobile
programmer departed the lab for
an outside position.

The first MASLO authoring tool
prototype

The first prototype for a MASLO
authoring tool was created by the
lead programmer on the project.
This interactive prototype was
not designed to facilitate user
testing but was intended to help
the design team grapple with
the features and basic concepts
for the design. There were long
debates about the placement of
certain features and the numbers
of features the authoring tool
should offer. The previously developed Revu4u application
was a multiple-choice test preparation tool and the first in-
clination by the programmer was to make sure that he built
an equally robust multiple-choice test tool into MASLO. The
first limited prototype for a mobile content authoring tool is
shown in Figure 4 with the working name of “MilkShed.”After
the MilkShed prototype was created, the team took a step
back and decided to take a different approach. There were
two situational factors that led to the decision to rethink
the design. One was that the lead mobile programmer took
a new job (a factor examined further in the next section
of this case). The second factor was a realization that this
interface, while simple, was already more complicated than
the team originally envisioned. An additional impetus to
rethink the authoring tool interface arose during a design
team meeting. During that meeting, attempts to discuss all
of the MilkShed buttons created a sense of confusion about
nomenclature and function. The conversation started in that
meeting continued for over a week. A key outcome of this
discussion was a general concern that if the design team was
confused about the overall goals of the system, it would be
challenging to keep the product simple for end users.

There was internal conflict about the tension between
potential technological capabilities of the system and the
need to provide a simple and accessible user experience.
Our software developer could see far more possibilities for
features in both the authoring tool and the mobile devices,
and wanted to ensure that the interface accounted for these
potential uses. One team member shared the following blog
and video by Stanford professor BJ Fogg (2008): http://www.
behaviormodel.org/ability.html with the team via email to
attempt to bridge some of the divide between possible

technological capabilities and simplicity. While never formal-
ly resolved, the conflict lessened when the original software
developer accepted a new position in the private sector.

Employee turnover

Six months before the project began, a new associate
director of research joined the AADLC team. His background
was primarily design-oriented and significantly less techni-
cal. In the initial stages of the project, the senior software
developer worked primarily in isolation consulting with the
associate director of research and the rest of the team on no-
menclature, and periodically presenting the result of his early
stage interactive prototype to the other team members. The
result was that the senior software developer’s concept of
the project was fairly well defined before any other member
of the group had an opportunity to weigh in on interface
considerations, or general perspectives on the end user.

Just before the official contracted start date, the senior
software developer accepted a new position outside the
university. The process impact of this turnover was that the
timeline of the project had to be lengthened to 18 months
through a “no-cost” extension (meaning that the U.S. DoD
would allow the longer time but provide no additional
funding). The scope and overall architecture of the project
remained unchanged, but many design decisions changed
significantly. Some of the technical design changes are
discussed later in this case.

The loss of the programmer meant a substantial delay in
code development, especially for the iOS and Android
apps. However, it gave an opportunity for the new asso-
ciate director to focus on the user interface design of the
product rather than the program code. The senior software

FIGURE 4. The prototype of the first MASLO authoring tool, temporarily codenamed “MilkShed.”

http://www.behaviormodel.org/ability.html
http://www.behaviormodel.org/ability.html

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 112

developer approached the project under the assumption
that front-end interface concerns could be considered after
all back-end capabilities were defined. While this perspective
on software development was valid, it trended towards the
development of a system that would have more capabilities
than would be required by the end users.

From the associate director’s perspective, leading with
expansive system capabilities also ran the risk of pushing the
authoring tool towards an interface that supported expert
users with a high level of computational fluency, but had too
high a bar for many potential users who were less digitally
savvy. While it is certainly possible to start with a complex
system and then develop an interface that can meet users
where they are, this approach also tends to invest significant
project resources in developing features that only a small
portion of real users actually access. Refocusing the project
from a user’s perspective meant leading with an analysis of
the end users and development of the interface concept
first, then working to establish a back-end for the system
that could handle the necessary content types in relation to
the front-end workflow.

Approximately six months after the lead developer left the
lab, a new software developer was hired to continue the
project. By that time, the associate director and remaining
programmer had established a new workflow and approach
to the project. That approach included simplifying the inter-
face and conducting multiple rapid prototypes and usability
tests which will be discussed later in this case.

Back to the drawing board—Rethinking the authoring tool
audience: teachers, faculty, and trainers, not instructional
designers or programmers.

Numerous whiteboard sessions were conducted by the
AADLC staff with ideas for the authoring tool interface
generated and quickly discarded even before mockups were
created for usability testing. Figure 5 shows an interface with
tools that would slide off and on screen as they were select-
ed. This version was erased from the whiteboard shortly after
it was conceived and never made it to a paper prototype.

MASLO authoring tool: The second concept prototype

The next version of the authoring tool interface was initially
sketched up through a series of whiteboard sessions. General
usability heuristics were employed to drive rapid iteration
across these sessions. Once a reasonable baseline interface
concept was achieved, the interface was mocked up in a
variety of states using a web-based tool called MockFlow,
which allowed the team to extend the rapid prototyping
process beyond whiteboarding and related approaches for
sketching interface concepts. Learning MockFlow was a bit
of a challenge primarily due to its workflow which presented
some problems to the team. First released in September of
2009, MockFlow was a relatively new product with some
evident limitations. At the time the team was using it in early
2011, it lacked a few capabilities common to comparable
software such as quickly moving elements between layers,
or easily adding custom graphics to a mock-up. Nonetheless,
it was workable for generating early, testable paper proto-
types quickly. The result was a second concept prototype
built with an understanding that the team would use it as an
instrument for usability testing.

FIGURE 5. Example of an early whiteboard draft version of the authoring tool that never made it to a paper prototype.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 113

The use of paper prototypes was new for several team mem-
bers and the value was not immediately clear for all mem-
bers compared to the use of digital prototypes. Once the
first tests began, however, there was a general recognition of
how paper prototypes could provide valuable data. Figure 6
shows one of the next-generation MASLO interfaces, which
was greatly simplified from the MilkShed version.

Usability testing: Examples of changes large and small over
multiple iterations

Figures 7 to 13 are some examples of how paper prototypes
and rapid iterative development changed the interface. They
represent the progression of the design over the course
of the project once the transition was made from initial
whiteboard sketching to paper prototype development

using MockFlow. As is evidenced in these examples, design
began with a more complex interface that drew on several
common features from other applications, and became
progressively simplified over the course of several iterations.
Users were asked to write on the paper prototypes during
testing when it felt natural to do so, and some of their
feedback is shown in these examples. The samples selected
illustrate how users provided feedback through paper
prototype testing. Feedback came in the form of comments
written on the prototypes and comments recorded by
testers. All of this user input fed into the evolving interface as
it progressed towards an increasingly streamlined style with
simplified elements.

FIGURE 6. This is an early rapid prototype mockup of the authoring tool. The MASLO authoring tool project screen: This is the main
screen for initiating a new project. Note the simplification of this interface compared to the original MilkShed concept.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 114

	

FIGURE 7. Paper prototype data: multiple users indicated confusion over the check boxes that allowed content to show on a table of
contents page. This feature was dropped as a direct result of this confusion and the entire application was simplified by eliminating a
separate “table of contents” page in favor of a direct listing of all content pieces.

	

FIGURE 8. In the MASLO preview tool, multiple users drew arrows to indicate that they wanted to simulate swiping from screen to
screen, even though there were arrows in the content selection box on the left. While this initially seemed redundant, it was easy to add
and improved the user experience. The current version of MASLO features arrows on either side of the preview area.

	

FIGURE 9. Two users noted that the arrangement of this screen was not entirely clear. The user’s markings on the upper right image
suggest that simply placing all major content types in vertical alignment would eliminate confusion.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 115

FIGURE 10. A vertical alignment of the three buttons was easy to change at the paper prototype stage.

FIGURE 11. A version of the authoring tool that included tabs:
Tabs were part of the MilkShed concept and allowed multiple
screens to be “hidden” when they were not needed. The
simplified version of the authoring tool reduced the number
of tabs to two: an edit tab and preview tab (upper right of
image). Unfortunately, this placement of the preview tab
meant that many users never saw this feature. The last vestiges
of the tabbed interface died during user testing and a simple
button beneath the working area highlighted this feature in a
more direct way (see Figure 12)

FIGURE 12. Death of tabs: The later version of the authoring
tool with tabs removed.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 116

The examples in Figures 7 to 13 were only a handful of the
changes made as a result of user testing but they are some
of the more explicit cases that influenced development.
There were other design decisions that were the subject of
internal debates about the extent of control to impose on
authors and some of those are discussed in the next section.

User Constraint Versus Guidance

One persistent area that emerged through the project
was the degree to which authors should or should not be
enabled to make bad design decisions in their content
packages. While the design team agreed that it was futile to
attempt to “save users from themselves”, they also deter-
mined that looking at the system in terms of distributed
knowledge meant working to build some elements of best
practices into the software.

Content package size

One debate the team had was whether to limit the size of
content packages authors could create. At the time, Apple
had a hard limit of 20 megabytes for in-application down-
loads if the phone was not on a Wi-Fi network (i.e., using
cellular data transfer). Additionally, the devices themselves
had more limited memory to store content. The team de-
bated whether authors should be prevented from creating
packages that would be difficult for learners to download in
potentially restrictive situations.

The decision was to provide a warning for packages exceed-
ing 20 megabytes but not to set a hard limit for authors.
While a hard cap prevents suboptimal designs by novice

content developers, it also restrains authors who
might understand this limit, but who need to
develop media rich packages. One key factor in
our decision is that all packages are designed
to operate offline so there is some expectation
that people might download large multimedia
packages when they have broadband access.

Formatting text

In approaching the design of the WYSIWYG
(what you see is what you get) editor, the team
made a more or less unanimous decision to
limit the array of tools available for formatting
text. Despite feedback from some of the test
users indicating a desire to have a greater array
of text formatting capabilities, the team realized
that this was one area in which the benefits of
giving more control to advanced users were
outweighed by the consequences of giving too
much control to users who had less knowledge
about designing instruction for mobile screens.
Elements like font, size, and color were not

included in the WYSIWYG editor as the potential to create
poor experiences using these elements was too great.
Elements such as bold and italic styles, for emphasis, and
numbered and bulleted lists were retained, as these tools
can be essential for creating good instructional content.

Instructional guidance

In early conversations, the team discussed providing instruc-
tional design guidance as well as simple content guidance.
Merrill (1999) notes that most content development tools
provide this kind of structural guidance but no instructional
guidance. Wary of this criticism, one original idea was to give
authors a series of templates that would guide them in ways
to take advantage of mobile devices as they created their
packages.

This idea was discarded for two reasons: (a) it was out of
scope for the project and programming these templates
would have far exceeded the budget; and (b) based on
potential constraints imposed by such templates, the team
felt that authors might see themselves bound to a particular
instructional approach with a tool that was largely intended
to provide open options.

The result of this decision is unclear but the current version
of the authoring tool tends to lead people to develop ex-
tremely linear content (in the very limited uses we have seen
so far), even though other types of instruction are possible.
This is a feature that might be revisited in future versions of
the authoring tool.

FIGURE 13. A screenshot of the release version of the MASLO authoring tool
after all of the testing and code development was completed.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 117

Peer Coding

One unique design process that emerged during the course
of the authoring tool development was one we called “peer
coding.” In Agile software design, pair programming is a term
that is sometimes used to describe two programmers work-
ing together (Williams & Kessler, 2002). In that definition,
the role of the second programmer is often to catch errors
while the first programmer is still coding. For this project, the
roles were very different. The two “peers” in this case were a
designer; the associate director and the programmer. Rather
than checking code per se, the designer would ensure,
in real time, that the programming work was yielding the
appropriate interface outcomes. In addition, the designer
functioned as a sounding board for the programmer. The
programmer would walk the designer through the code as it
had been written up to a point where he was encountering
a challenge. The designer would then prompt the program-
mer with a series of questions from his intelligent novice
perspective (Halverson, Wolfenstein, Williams, & Rockman,
2009), and in the process of answering them, the program-
mer would determine one or more possible solutions to
the development problem. The two would then establish
the best path forward based on the previously established
design goals.

MASLO: The Mobile Applications

The MASLO kit contains the code for an iOS (Apple) appli-
cation and an Android (Google) application. Interfaces for
these two applications are almost identical. Team members
referred to these applications as “players” because they allow
users to view and interact with learning content but do not
permit authoring of content.

Usability testing for the mobile applications

User testing for the mobile players was not as extensive as
it was for the authoring tool. The rationale for less testing
was functional and pragmatic. The functional reason for
less user testing was that the app was far less complicated
than the authoring tool. Users could download and view
content and make a couple of setting changes but could
do little else. Pragmatically, the project was running behind
schedule due to employee turnover and there was no time
for multiple rounds of testing. Testing was completed on the
first mockup and some changes were made.

Much of the focus for the mobile app usability testing was
on labels and navigation names. One challenge was to help
users understand that they had to download content packs
onto their devices before they could access the content. One
screen in the app represented all of the possible content
available (stored on the server) and another screen showed

	

FIGURE 14. These are images of paper prototypes for mobile after user testing. Note the “Why ‘My’?” in the first image and “Confusing”
in the second.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 118

the packages that had been downloaded to the device. Both
screens looked the same (lists of content packages) and
differentiating between them was difficult. When combined
with the limited real estate of a mobile phone, finding the
right words became a challenge.

The team debated different terms based on how other mo-
bile applications were addressing this problem. For example,
e-book reader apps, such as Amazon’s Kindle or Apple’s
iBooks, had similar models (download books and read them
on the device). At the time, the word “cloud” was still new
and Amazon addressed this through “My Kindle” and “Store.”
The team debated terms like “store” and “library” for naming
the storage area and finally decided to try “My” and “All.”

Using the simple terms “My” and “All” as shorthand for con-
tent downloaded to “my” device or “all” content available on
the cloud proved to be confusing to the usability testers (see
Figure 14). After asking users what they would understand,
the team settled on “Home” and “Store.” The app opens to the
home screen and, if empty, this page contains a message
directing users to the store screen to download content (see
Figure 15). Given the impending deadline to complete the
project, the team felt this was a reasonable solution.

Controls on the home screen are minimal and only include
the ability to sort by title and to edit or delete content
packs. The store screen includes a button next to each pack
with four different possible states: (a) Install, indicating that

	

FIGURE 15. Examples of the release versions of the MASLO “Home” screen (left) and the “Store” screen (right).

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 119

content is not downloaded; (b) Installed, indicating that con-
tent is already on the device; (c) Updated, indicating that the
pack is installed on the phone but the content in that pack
has been changed since it was downloaded to the device;
and (d) Price (e.g., $2.99), indicating that the pack is premium
content and that the user will be charged to download that
content to the device.

In addition to these and other user interface issues, the team
had to make a number of critical decisions about how to
support at least two mobile operating systems and leave
open the possibility that other systems could be supported
in the future.

Native Applications Versus Web Applications for
MASLO

In the world of mobile application development, there
are a couple of basic choices in terms of how an app is
created. One is to use the programming language of the
proprietary software systems (i.e., native apps), and the
other is to develop “web apps” or mobile-enabled websites
with programming sophisticated enough that they can
handle more complex functions. There are pros and cons
to each approach. Native development requires creating
different application code for each device while a web app
will generally run on any smartphone that supports web
browsing. Web applications, however, only support limited

	

FIGURE 16. Examples of two types of basic MASLO content. An edited text page in a MASLO pack (left) and a sample quiz (right).

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 120

functions that many smartphones can deliver, especially
when operating offline, and so the possible feature set of an
application is reduced.

The types of content and display functions of MASLO are
simple and could be handled through a web app (see Figure
16). One of the key factors that led the team to select native
application development over web application develop-
ment is the commitment to deliver the content when the
phone or mobile device is offline. While web applications
do allow caching (storing web content offline), iPhone limits
this cache in such a way that larger content packages would
not be able to download or run on the device. At the time
MASLO was in the latter stages of development, this web ap-
plication cache limit was 20 megabytes. Exceeding 20 mega-
bytes was likely for any package using video and would limit
many potential instructional uses. In addition, since caching
did not appear to be an option during the earlier stages of
development the file structure was not developed to work
with a solution that leveraged caching content. As such,
creating a web app version of MASLO would not have simply
meant modifying the existing software to create a third
version of the player. It would have meant a major overhaul
of data structure and the authoring tool. Nonetheless, the
team discussed this option thoroughly before discarding it,
because if it had been possible to create a web app version
of the player at low cost it could have extended the reach of
MASLO to include learners who did not have smartphones.

Using PhoneGap

One way the software developer decided to manage the
complexity of keeping applications for two different plat-
forms (iOS and Android) in alignment was by using a tool
called PhoneGap. While some back-end elements for the
two MASLO applications ultimately needed additional native
code for each respective platform, PhoneGap helped to keep
the core code base for front-end and back-end interface
the same. The main goal was to keep software maintenance
for subsequent mobile operating system upgrades as
convenient as possible. PhoneGap, however, did not remain
as backwards compatible as developers had initially hoped.
Rapid release cycles with numerous adaptations of new
features and bug fixes regularly required significant changes
in the PhoneGap-interfacing code in addition to necessary
changes to keep up with API (application programming
interface) updates in the native code for Android and iOS.
In hindsight, it is questionable whether the decision to use
PhoneGap versus going entirely native truly saved develop-
ment and maintenance time.

PhoneGap was originally developed by the independent
shop Nitobi Software. However, Nitobi and PhoneGap
were acquired by Adobe in late 2011 while MASLO was in
an active stage of development. While this has ultimately
led to a broader scale of support for PhoneGap, it was an

unanticipated development for the MASLO team. It is ulti-
mately unclear what effect, if any, the Adobe acquisition had
on support for PhoneGap while MASLO was in development.
But as with the significant changes to mobile operating
systems that took place over the course of the project, it
draws attention to the dynamic and, at times, unstable
nature of mobile technology development over the course
of the project.

MASLO: Cloud Storage

When the new software developer joined the project, she
came into a situation in which a number of design decisions
had already been made. While many conceptual elements
were in place, there were many details that were not deter-
mined. One of the significant components that had yet to be
specified was the cloud storage for content packages. The
team assumed that the previous Revu4u project provided
the groundwork for this part of the project, but numerous
design changes meant that the cloud storage had to be
engineered as if it were a new project.

Amazon

In the precedent Revu4u application, AADLC developers
used Amazon’s schema-less database system, SimpleDB,
to store all data in small, but flexible increments (Branon,
Wolfenstein, & Raasch, 2012). The reasons for this decision
resulted from the specific requirements of that project. For
MASLO, however, the database aspect of Amazon’s services
added complexity, especially in relation to the file structure
and the potential size of MASLO content packages. The new
software developer on the team believed that using Amazon
web services would be sufficient for the needs of MASLO
and would simplify development.

Security

The design team had given little thought to the security
features required for managing the content storage. While
security or authentication is not necessarily needed for
providing free content to end users, it can become an issue
for content deployment. In general, it is rarely desirable to
give upload access to just everybody because this can lead
to a number of problems, ranging from simply providing too
much content, to creating workflow challenges, to providing
content containing malicious or illegal material. Therefore,
the cloud storage component required at least a basic
upload limitation feature.

Limiting content provision can be done in multiple ways.
One way is to designate a central administrator who has to
review and approve every uploaded content piece before
it is allowed to go “live”. This method, however, potentially
requires a lot of attention and in-depth knowledge, from
the administrator, about which content is appropriate. A
different way to limit content provision, and the method

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 121

MASLO implemented, is to maintain a database
of authorized users. Before users can upload
content, they have to authenticate with the
cloud storage system. A central administrator
still has to add users to the system but once a
content author is in the system they can freely
upload content, which can be provided to end
users right away.

Administrative interface

By the time the Amazon components were
being constructed, there was no time for
usability testing of any of the administrative
interfaces. Given that the first apps were likely to
be developed by the AADLC, and the clock was
ticking, these interfaces were an afterthought.
While the functions were simple, there was no
time to ensure all the elements were easy to
follow. The team realized that anyone working
on the administrative side of MASLO would need
a technical background. The authoring tool and
the applications had to be extremely simple
because non-technical users were the audience.
In the case of setting up cloud storage, the audi-
ence would be someone with the experience to
at least set up and manage a web server.

Since the cloud administrator panel was an
afterthought, the initial version was completely
based on terminal scripts without any graphical
user interface. To allow test content authors to
see their uploaded content while the mobile
client was still under submission with the Apple
App Store, a basic web front-end was added,
whose appearance very closely resembled the look and feel
of the MASLO authoring tool. The initial front-end allowed
users to see an overview of the uploaded content packs, to
log in, and for authenticated users to delete content packs
(see Figures 17 and 18).

DISCUSSION
The primary goal for the MASLO design effort was to build
a fully functional prototype mobile learning authoring tool
and delivery platform.

Outcomes and Relevance

Two known apps exist that are built with the MASLO
platform (the open source nature of the project means that
others are possible). One is the prototype MASLO Setup
Guide application. The first prototype application was creat-
ed with the MASLO kit as a proof of concept but also as an
instructional tool about the MASLO kit itself. It can be found
in the Apple iOS app store with the decidedly unappealing
but literal name “MASLO Setup Guide.” This guide has seen

limited downloads and is of use primarily to developers
looking to implement the application.

The second application represents a new fork in the MASLO
code that allows multiple content stores to exist within a
single app. Explanation of the changes in MASLO go beyond
this design case and may form the basis for a future case. It is
mentioned here to show that the MASLO code is still in use
as of the writing of this case. The name of that application
is the University of Wisconsin-Extension Learning Portal
(search the app store for UWEX LP). Originally, the AADLC
was developing two applications for educational projects
at UW-Extension using the platform. One of these was a
labor education application with a faculty member at the
UW-Extension School for Workers. The faculty member
developing the content for that application is an expert in
migrant farmworker issues and plans to distribute it through
a national labor organization serving more than two million
workers. The other application was called “History on the Bay”
with a UW-Extension Cooperative Extension professor (B. H.
Huff, personal communication, January 19, 2012). Because
multiple faculty members wanted these applications, a

FIGURE 17. A screen capture of the cloud storage administrator interface.

FIGURE 18. A screen capture of the administrative login interface. FIGURE
18. A screen capture of the administrative login interface.

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 122

version of the MASLO mobile app was created to accommo-
date multiple authors.

In 2012, there were other indications that the MASLO code
was being used beyond our projects. All of the code is still
available for download for free from the Academic ADL
Co-Lab website (http://www.academiccolab.org). An email
distribution list was also made available for those interested
in following the continued development of the MASLO
platform. One hundred and fifty people signed up to be
notified of updates to the platform but the email list was
ended in 2014. The team did receive email from several
developers across the U.S. with questions. One developer in
Hungary submitted bug reports to the GitHub site for the
project (a repository for open source software projects). We
do not require people to notify us about MASLO uses, so it is
not clear how many of these projects are moving forward or
what these people are doing with the software, but it is an
indication that it was explored by a number of people.

Despite these MASLO use cases and early interest, the team
is continuously reminded of the challenges that non-techni-
cal application creators face in the mobile space. While the
MASLO authoring tool and mobile interface went through
extensive testing and have proven easy to use, creating an
app, setting up server storage, and managing the constant
technical changes to mobile platforms still requires deep
technical skills. When presenting on MASLO or having
discussions, team members have repeatedly heard that
this technical knowledge requirement remains a barrier for
more widespread MASLO adoption. The team discussed
the potential to streamline the entire MASLO application
creation component, but the constantly changing technical
requirements of the space mean that such a tool set would
be cost prohibitive. The team investigated one solution of
offering an “open source business model” in which the tools
were free for those with technical skills, but that plan did not
come to fruition.

Design Reflections

While MASLO is a mobile learning platform and not a specific
instructional intervention and the design decisions are
specific to this instance, it represents systems design in the
emerging space of mobile learning technology. Because
this is work within a rapidly evolving area, this design case
is deeply situated in the time in which the work occurred.
Changes to mobile devices, their operating systems, mas-
sively distributed (i.e., cloud) computing services, contractual
language, and terms of service agreements mean that some
of the decisions in this case will appear dated much more
quickly than might be true in other design cases. Despite
the imminent loss of relevance for some choices and even
because of it, the team felt that capturing this project’s
design decisions creates precedent knowledge beneficial
to the field. Three of the major decisions the authors faced

when developing MASLO are summarized in the following
sections.

Design decision reflection: MASLO architecture (Computer
authoring, mobile delivery, and cloud storage)

When MASLO was first proposed in 2010, the idea of using
separate servers to store content was only beginning to get
some traction. Just two years later, in 2012, such offerings
were common and, at the time of the final revision of this
design case in 2015, may even seem quaint to many soft-
ware designers. The ability to store content separately from a
mobile application is customary and ever more sophisticat-
ed. In 2010, the Android and iOS application environments
were far less compatible. While substantive differences
remain, the ecosystem of developer tools allowing easier
cross-platform compatibility has rapidly grown. Both are still
valid considerations but the technical barriers are far lower
in 2015.

What has changed dramatically and was even changing
while the project was actively forming was the decision
to limit content authoring to desktop or laptop comput-
ers. The decision to use Adobe AIR meant that content
authoring could be done from either an Apple Mac or a
Windows-based computer, but mobile devices (tablets or
phones) could not manage the file storage or file formats
in an effective way. Users wanted that functionality but the
limitations of 2011 mobile operating systems did not make
that easily doable. Of all the design decisions the team made
in 2011-2012, those related to architecture are the most
noticeably dated just a couple of years later.

Design decision reflection: Access versus parsimony

One of the most critical and ongoing set of design decisions
was related to the tension between maximizing the capa-
bilities of technology and the desire to create software with
a low technical knowledge requirement. The first software
developer was a computer scientist with an advanced
knowledge of software design. He could see possibilities
and capabilities for MASLO that the team and users could
not envision. The project owner, coming from a more
user-centered design background wanted to make sure that
the software was not so complex that it was unusable by the
target audiences. The initial tension was resolved when the
first software developer left the university for a private sector
position.

While the early technical work remained, the team used the
time between the departure of the first developer and the
hiring of the second to conduct interface user-testing with
paper prototypes. The tension emerged in several other
aspects of the design. For example, the team had to decide
how much to prevent users from uploading content that
might create a “bad” mobile experience for their learners. This
meant choosing whether to restrict file types and file sizes so

http://www.academiccolab.org

IJDL | 2016 | Volume 7, Issue 3 | Pages 105-123	 123

that only optimal files could be uploaded. One example of
compromise was to restrict video files to those which would
run on both iOS and Android but not to restrict file size.
Instead, a warning would pop up to let users know that the
size of the file might impact learner experience. Part of the
rationale in making these decisions was to stop users when
a particular action would not work at all (in the case of file
formats), and allow actions that might be detrimental but
could ultimately work (such as very large file sizes).

Even the word “access” became a loaded term for debate.
For example, making the entire project open source meant
that no educator would be prevented from experimenting
due to burdensome licensing costs, but that also placed a
higher burden of technical knowledge on the user. Access to
extra editing features for more technical users was generally
limited to preserve access for non-technical users. The team
used a principle of parsimony over feature capability but one
user’s simplicity was another user’s barrier to create the con-
tent they wanted. Parsimony was a constant part of the con-
versation and one that was only partially resolved and even
then it was often resolved due to other project constraints
(i.e., employee turnover, time/budgetary requirements).

Design decision reflection: Open source

The decision to make the application and code open for
modification and non-commercial use was both a contrac-
tual requirement and a design decision to improve access.
The intent was to keep the costs low and have a thriving
community to take over the project after the initial grant
funding ended. At the time, the U.S. Department of Defense
was placing a higher value on open source projects so that
they could use and modify code without seeking additional
licensing expenses. Like so many open software projects,
however, the critical mass of developers needed to sustain
such an effort did not materialize.

While the code is still publicly available, no known work
outside the team has materialized. As more time passes,
it appears that the code is withering because the original
team has disbanded and moved to new endeavors. One
reflection is that open source is ultimately dependent on the
creation of a strong support community. The project budget
and constraints on the development team did not take into
account the need to develop such a strong community.

CONCLUSION AND A POSTSCRIPT ON THE
FUTURE OF MASLO
This design case represents a moment captured in time
up to the 2012 release of the first iteration of the MASLO
platform. As of 2015, the MASLO team has disbanded and
moved on to other professional endeavors. The code re-
mains available for modification and use but, without almost
continuous updating and upgrading, the platform has failed

to keep pace with the times. The projects mentioned at the
beginning of the discussion section have mostly stagnated
or chose to use newer software. The authors believe MASLO
remains a worthy design case because the challenges
of using emerging technologies are part of educational
technology’s past and future.

Designers creating software platforms will all contend with
shifting standards, changing platforms, and rapidly evolving
user needs. Forging a path through a foggy future and
making design decisions while changes are happening are
likely the norm for future educational software designers. It
is the authors’ hope that the decisions made in this specific
case provide designers with additional knowledge they can
pull apart and recombine to create the next generations of
software.

ACKNOWLEDGEMENTS
The MASLO project described in this design case was funded
through a Broad Agency Announcement grant (W91CRB-08-R-007,
2010) through the United States Department of Defense.

REFERENCES
BBC News. (2012, March 20). Which is the world’s biggest employer?
Retrieved from http://www.bbc.com/news/magazine-17429786

Branon, R., & Wolfenstein, M. (2013). MASLO: An open source
platform for mobile development. In W. Kinuthia & S. Marshall (Eds.),
On the move: Mobile learning for development (pp. 69-84). Charlotte,
NC: Information Age Publishing.

Branon, R., Wolfenstein, M., & Raasch, C. (2012, February). iOS® and
Amazon SimpleDB: Connecting mobile learning to the cloud.
eLearn Magazine. Retrieved from http://elearnmag.acm.org/archive.
cfm?aid=2151676

Carroll, J.M. (1990). The Nurnberg funnel: Designing minimalist
instruction for practical computer skill. Cambridge, MA: MIT Press.

Halverson, R., Wolfenstein, M., Williams, C., & Rockman, C. (2009).
Remembering math: The design of digital learning objects to spark
professional learning. E-Learning and Digital Media 6(1), 97-118.

Maeda, J. (2006). The laws of simplicity: Design, technology, business,
life. Cambridge, MA: MIT Press.

Merrill, D. M. (1999). Instructional transaction theory (ITT):
Instructional design based on knowledge objects. In C. M. Reigeluth
(Ed.), Instructional-design theories and models: A new paradigm of
instructional theory (Vol. 2, pp. 397-424). New York, NY: Lawrence
Erlbaum.

Nielsen, J. (1999). Designing web usability: The practice of simplicity.
Indianapolis, IN: New Riders Publishing.

Norman, D. (1988). The psychology of everyday things. New York, NY:
Basic Books.

VideoLAN legal concerns. (2015, April 15). Retrieved from http://
www.videolan.org/legal.html

Williams, L., & Kessler, R. (2002). Pair programming illuminated.
Boston, MA: Addison-Wesley Longman Publishing.

http://www.bbc.com/news/magazine-17429786
http://elearnmag.acm.org/archive.cfm?aid=2151676
http://elearnmag.acm.org/archive.cfm?aid=2151676
http://www.videolan.org/legal.html
http://www.videolan.org/legal.html
http://books.google.com/books?id=LRQhdlrKNE8C

