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SIMCALC: DEMOCRATIZING ACCESS TO ADVANCED MATHEMATICS
Deborah Tatar, Virginia Tech, Jeremy Roschelle, SRI International, & Stephen Hegedus, Southern Connecticut State University

Historically, what people can learn is co-determined by the 
representational infrastructure for knowledge building. When 
Latin was the required medium of knowledge building, few 
could engage in scholarly activities; without the change to 
the vernacular, nearly universal access to higher education 
would not be possible. The highly compact, abstract, and 
opaque symbolism of mathematics presents similar barriers 
to the necessary democratization of access to important 
mathematics. 

Over the course of a program of research lasting more 
than 20 years and involving contributors from institutions 
throughout the United States and worldwide (Hegedus & 
Roschelle, 2013), the representationally innovative design 
of SimCalc Mathworlds® has provided affordances for novel 
and effective approaches to teaching important algebraic 
and calculus-related ideas. When integrated with appropriate 
curricular workbooks, teacher professional development, 
and other instructional factors, dynamic representation has 
enabled diverse populations to learn more advanced math-
ematics. Research has included both design research as well 
as large-scale experiments involving hundreds of teachers 
and thousands of students; overall, the approach also has an 
unusually strong base of empirical support. We focus on last-
ing, essential design contributions of this body of work with 
a special emphasis on the dialectic relationship between 
affordances of technology and curricular progressions.
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INTELLECTUAL BACKGROUND

Backgrounds of the SimCalc Team and Present Authors

The founder and long-time leader of the SimCalc project was 
James J. Kaput, a mathematician and mathematics educator 
with a strong vision for the appropriate role of technology in 
mathematics education. Kaput often shared his vision via an 
analogy: 

When knowledge was expressed in Latin, very few people 
could learn by reading; however, as knowledge was 
re-expressed in the vernacular, many more people could 
learn by reading. Likewise, when math is expressed in an 
arcane symbolism, very few people can understand it 
well; however, as technology allows us to find new ways 
to represent mathematical ideas, there is the possibility of 
enabling many more people to deeply learn mathematics. 
(Kaput, Personnel communication)

Kaput was gifted not only in developing a vision and themes 
for his projects, but also in pulling together a diverse, multi-
disciplinary team to execute them. Many kinds of expertise 
were represented on the team over time (Roschelle, Tatar 
& Kaput, 2008). At the onset, the team included Kaput, a 
mathematician; Nemirovsky, an expert in child development 
and mathematics; and Roschelle, one of the co-authors and 
a computer scientist and learning scientist. Over time, the 
team expanded and contracted. At various times the team 
included: mathematicians, scientists, teachers, experts in 
teacher professional development, experts in assessment, 
computer programmers, experimental psychologists, 
curriculum designers, and industry experts. 

Two of the three authors of this retrospective analysis started 
their careers working with Logo and Boxer, an important 
rethinking of Logo that integrated programming, specific 
microworlds and hypertext to create a multi-purpose com-
putational medium (diSessa, 2000, 1991; diSessa & Abelson, 
1986). Based on this preparation, they recognized the great 
opportunity inherent in SimCalc. The first author, Deborah 
Tatar, was involved in several projects, primarily from 2000 
until 2008 and is currently a professor of computer science 
with a focus on the design of systems that restructure know-
ing. The second author, Jeremy Roschelle, brings expertise 
both in computation and the learning sciences and has the 
longest history with SimCalc, running from 1994 until the 
present time and encompassing every aspect of the project 
from implementation to scaling. The third, Stephen Hegedus, 
brought a background in mathematics and mathematics 
education to bear on the project starting in 2000 and took 
on the running of the overarching project after Kaput’s 
sudden and untimely death in 2005. 

Strands of Research and Development for Technology 
in Mathematics Education

Approaches to the use of technology in mathematics 
education can be understood as drawing on three different 
predominant approaches (Drijvers, 2012). One approach 
emphasizes productivity, and emphasizes tools that are 
useful in everyday life, such as rulers, slide-rules, calculators, 
graphing calculators, spreadsheets, and the like. Another 
approach emphasizes support for structured practice with 
feedback and tutorials, and includes self-paced workbooks, 
drill and practice software, and game-like wrappers that 
motivate practice of mathematical skills. Today, the orienta-
tion to optimal practice of mathematical skills continues in 
the form of intelligent tutors and adaptive learning systems. 
A third approach is the subject of this paper, and concerns 
students’ development of the ability to make sense of 
mathematics and to develop conceptual understanding. 
Predominant tools in this category emphasize simulation, 
visualization, and representation -—and often involve tools 
that are constructed to support deep learning, even if those 
tools are not currently used professionally in the way that a 
spreadsheet is. 

Each of these approaches has a past, a present, and future. 
Each approach has existed across a range of underlying 
platforms from timeshare systems through to today’s cloud 
and tablet solutions. Thus, it is not the case the one approach 
is more “modern” than the others. Further, each approach has 
applications and evidence of effectiveness. Thus, is not the 
case that one approach is “better” than the others. The differ-
ent approaches have different goals, corresponding to differ-
ent goals that co-exist in mathematics education. Designs, 
of course, are successful relative to goals. Consequently, 
will not attempt to compare designs across these different 
approaches. However, we draw on examples from different 
approaches to highlight the contrasting approaches with 
this specific design and its features. 

LOGO AND THE CONCEPT OF 
MICROWORLDS
One of the great promises of computer technology in educa-
tion has been transformation. Some projects try to change 
learning by, for example, liberating learning from the class-
room; others by liberating learning from teachers; yet others, 
as in the SimCalc project1, have sought to use technology to 
liberate mathematics learning from arcane, esoteric symbol 
systems and render it more readily approachable and 
understandable. 

Historical roots of the Simcalc Mathworlds® approach built 
upon an early great educational movement that was based 
on the Logo computer language for children; Logo was 

1 We use “SimCalc” to refer to the project and SimCalc Mathworlds® 
to refer to the implementation. 
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promoted and memorialized in Seymour Papert’s 1980 book, 
Mindstorms (Papert, 1980). Authors Tatar and Roschelle were 
both deeply involved with the Logo movement. This ap-
proach contrasts with a “CAI” (Computer-Assisted Instruction) 
approach, for example as represented contemporaneously 
by PLATO (Hammon, 1972). Logo was built to be learnable 
along principles influenced by the great Swiss psychologist 
Jean Piaget; Papert offered the evocative analogy from how 
he explored the concept of ratio as a child using physical 
gears to how children could now explore a broader range 
of mathematical concepts using Logo as “gears for the 
mind.” PLATO, in contrast, automated a traditional instruc-
tional approach consisting of providing the student with 
information, practice tasks, and feedback. Whereas PLATO 
offered teachers an approach to authoring instruction, Logo 
sought to offer children opportunities to construct their own 
computer programs. But Logo was more than a computer 
language. 

The expressive form of turtle geometry allowed children to 
explore a rich panoply of outcomes related to the details 
of their programs. Programs could control the actions of a 
physical or virtual turtle, by asking it to, for example, move 
forward. A physical or virtual pen left a trail, thus allowing 
the children to at once draw and picture and have a trace of 
whether the commands had been executed as imagined. 

As an educational community developed around Logo, its 
use moved beyond programming towards the development 
of constrained, playful environments in which students 
could explore powerful ideas of mathematics and science. 
These environments were termed “microworlds,” and like 
Einstein’s famous gedanken (thought) experiments, rendered 
technical ideas in a form conducive to playful engagement 
with fundamental ideas. Important principles (Hoyles & Noss, 
1993) included: putting learning into children’s hands, that 
is, treating them as bricoleurs (tinkerers) and letting them 
create; seeking newly accessible ways to render powerful 
ideas in a experience students could interact with; and “no 
threshold, no ceiling” environments which were initially 
simple but allowed engagement, over time, with complex 
endeavors (Abelson & DiSessa, 1986). 

Whereas the design target in CAI systems was usually a 
course of study, the design of microworlds often began 
by identifying a foundational concept of science or math-
ematics which students were not reliably learning in a 
traditional course. Design work included the identification 
of foundational concepts and thinking out exactly how to 
invite and encourage engagement with those ideas, creating 
a kind of playground in which the learner would be brought 
back to them time-and-again. With these playgrounds, 
modeling was often a fundamental activity: students 
were invited to use scientific or mathematical constructs 
to reproduce a familiar phenomena or experience. For 
example, students might use the ability of a turtle to move 

forward and turn in small increments to model a circle as 
the limit of a regular polygon with increasingly short sides 
and small turns. Elements that are now often brought into 
discussion of learning strategies were taken as foundational. 
In particular, embodied learning and the use of virtual—and 
physical—manipulatives. 

Over the years, there have been hundreds of implementa-
tions of micro-worlds in different areas of endeavor, ranging 
from music (Bamberger, 1974, 1976) through to chemistry 
(Schank & Kozma, 2002) and physics (White, 1993). The direc-
tion continues in projects such as those reported in diSessa’s 
Changing Minds (2000), which focuses on bringing children 
into contact with powerful ideas, and has found new life 
in a variety of intellectual homes: via the Scratch language 
(http://scratch.mit.edu/), in Media Computation (http://
coweb.cc.gatech.edu/mediaComp-teach, Guzdial, 2003), and 
Storytelling Alice (Kelleher & Pausch, 2007). Other areas of 
focus include: manifestations of computationally controllable 
objects (c.f. Hendrix & Eisenberg, 2006; Weller, Do & Gross, 
2008); complex programming environments such as the 
parallel, distributed environment of NetLogo (Wilensky & 
Stroup, 2000) and AgentSheets (Repenning & Sumner, 1995); 
and game design (c.f. Nemirovsky, 1994); however, some of 
the most profound, long-lasting and widespread have been 
in the area of mathematics education. 

The Context of Mathematical Instruction

In the 1980s, the possibility of new ways of engaging 
students with mathematical ideas began to intersect with a 
movement towards reform of mathematical curricula. Just as 
the launch of Sputnik in the 1960s gave rise to “new math,” 
the influential report “A nation at risk: The imperative for ed-
ucational reform” (Gardner, 1983) incited a wave of thinking 
about the future of mathematics education. Whereas in the 
early years of the 20th century, educators sought to enable 
all students to master shopkeeper arithmetic, now the 
focus began to shift to algebra for all—a dramatic increase 
in instructional challenge. Simultaneously, mathematics 
educators began to question whether educational goals 
should be limited to computational and symbol manipula-
tion skill and pushed for mathematical attainment to include 
conceptual understanding and mathematical practices (such 
as expressing generalities). Presently, this shift continues with 
newer curriculum standards that emphasize not just skillful 
and accurate execution of mathematical calculations and 
procedures, but also focusing on conceptual development 
and enculturation into mathematical practices (e.g., the 
Common Core State Standards for Mathematics).

This shift in educational goals was supported by emerging 
mathematics education research, which was grounded in 
developmental and cognitive science approaches. Unlike 
instructional research, which tends to ask: “does this or that 
teaching strategy produce greater test score gains?”, the 

http://scratch.mit.edu/
http://coweb.cc.gatech.edu/mediaComp-teach
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newly emerging body of mathematics education research 
studied how individual learners build the next stage of 
mathematical thinking upon ideas and competencies they 
already had. This research was represented, for example, by 
the scholarly society “Psychology in Mathematics Education” 
and interlinked with the policy prerogatives noted above 
through the agency of an association of mathematics 
teachers, the National Council of Teachers of Mathematics. 
In some sense, this scholarship starts from the ur-question 
of why it is so difficult for so many people to learn mathe-
matical concepts that are quite plain to those who already 
know them. The kinds of answers provided have to do with 
uncovering the detailed hidden entailments of mathematical 
thinking and the aspects of human psychology that make 
representations work or, sometimes, not work for particular 
learners as particular developmental moments. 

This is the perspective most strongly represented by the 
third author of this account. Hegedus had completed his 
doctoral work investigating the metacognitive behavior of 
mathematics undergraduates solving single and multi-vari-
able integrals when he joined the project in 2000, and 
championed continued thought about representational 
elements. 

Dynamic Representations

SimCalc Mathworlds® (http://www.kaputcenter.umassd.edu/
products/software/) constitutes one of a number of technol-
ogies for learning that dovetailed with and elaborated the 
opportunities for reform of mathematics within the context 
of a pre-existing body of scholarly thought about mathemat-
ics education. Other similar approaches which emerged at 
roughly the same time include Geometer Sketchpad (Jackiw, 
1987-2007) and Cabri Geometre (LaBoarde, 1984-2007). 
This class of technology eventually became known for its 
“dynamic representation” approach. Like Logo, dynamic 
representations enabled learners to be active, playful, 
constructive, and expressive in a computer-based medium. 
But unlike Logo, dynamic representations do not focus on 
programming. Like microworlds, dynamic representations 
provide an invented, pedagogical environment that is meant 
to engage students with fundamental ideas of mathematics, 
rendered in an interactive and dynamic form. Relevant to 
the emergent development and cognitive psychology of the 
time, both microworlds and dynamic representations intend 
to activate students’ prior knowledge, and through the 
activities of exploring and constructing, allow students to 
build new knowledge. However, whereas microworlds have 
somewhat more focus on a fanciful context for mathematical 
ideas, dynamic representations have more focus on provid-
ing interactive mathematical notions and representations.

Democratizing Access to Calculus: The Mathematics of 
Change and Variation

The overall educational purpose of SimCalc was, in Jim 
Kaput’s, its progenitor’s, words, to democratize access to 
Calculus. In 1992, when the project that would be SimCalc 
started, it was clear that the rate of change, co-variation, 
accumulation, approximation, continuity, and limits were 
arguably some of the topics that would be most important 
to children moving forward. Kaput was fond of arguing 
that whereas “algebra for all” was a necessary advance in 
educational goals for society in the 20th century, “calculus for 
all” would be a necessary advance in the 21st century due 
to the importance of mathematics in understanding and 
regulating processes of change. Importantly, Kaput concep-
tualized Calculus not as a course of study taken at the end 
of a long sequence of mathematical prerequisites, but rather 
as a strand of mathematical thinking that could develop 
beginning as early as elementary school and which could 
enrich classic middle school topics, such are proportionality. 
Thus Kaput used the phrase “mathematics of change and 
variation” (MCV) to break the mindset of Calculus as a specific 
course, and to instead focus on how the underlying ideas 
could develop over a decade or more of a students’ mathe-
matical development (Kaput & Roschelle, 1998). 

At the heart of the SimCalc approach to MCV is the idea of 
considering rate as the relative change of two quantities (for 
example, position and time) which could be represented as 
the slope of a graph or a parameter in an algebraic expres-
sion or a motion or a set of values in a table. Technology 
provided a technical affordance for realizing these repre-
sentations in a dynamic interactive form. Pedagogical and 
curricular research sought to exploit technology to allow a 
potential restructuring of when mathematical ideas could 
be explored by young students as well as upper high school. 
Introducing a dynamic, technological medium also allowed 
young children easy access to touch and manipulate 
mathematical objects, including moving pieces of graphs 
and watching the resulting changes to the movement of 
one to linked actors in a simulation. Later on in the evolution 
of the SimCalc program of research and development, the 
affordances of classroom networks were incorporated into 
the integrated software/curriculum suite of resources to en-
able students to make personal mathematical constructions 
that could be shared within the classroom and publically 
displayed by the teacher in many different configurations. 
This allowed some researchers to not only investigate the 
cognitive dimensions of learning the MCV with diverse 
populations of students but also affective dimensions of 
engagement and motivation as the participatory nature of 
the classroom changed (Dalton & Hegedus, 2013). 

The aim of this program of design and research, “democra-
tizing access,” diverged from the contemporary emphasis 
on raising test scores, because Kaput sought to introduce 
students to concepts which were not commonly measured 

http://www.kaputcenter.umassd.edu/products/software/
http://www.kaputcenter.umassd.edu/products/software/
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on tests—and to focus on conceptual understanding, 
whereas most assessments measure procedural skill. It also 
diverged from an emphasis on preparing students to use 
modern workplace tools, such as spreadsheets, by focusing 
more on mathematical insight than on mathematical appli-
cations. “Access” did not mean availability or affordability of 
technologies or textbooks, but rather access to meaningful 
opportunities to learn. Operationally, “democratizing” meant 
an emphasis on design and development of activities for 
students who would ordinarily be excluded from reaching a 
traditional Calculus course by deciding “I’m no good at math” 
or by not achieving suitable grades in prerequisites.

To achieve democratization of access, Kaput was always 
committed to the idea that technology and curriculum 
should be, indeed, had to be, co-developed to better build 
on learner strengths. Additionally, he was always committed 
to classroom-based education; classrooms are places where 
all students can have an opportunity to learn (overcoming, 
for instance, limitations of the resources available in their 
homes) and where socialization into a mathematical culture 
can occur. Emphasizing classroom-based education has 
consequences. First, it means that design must address 
the situation of having a teacher together with a group of 
students as well as the situation of the individual learner. 
Second, it means that (truly) no learner can be left behind. 

These braids of thought, stemming from the potential of the 
computer, the detailed examination of the cognitive bases 
of mathematical knowledge, and a commitment to class-
room-based education, led to a formulation of the SimCalc 
research project as one which restructured knowing through 
finding points of possible design action where learners’ 
strengths, representational affordances, and a reorganized 
curriculum provided the opportunity to understand MVC in 
a new way. Some of this history has been reported, particu-
larly in Roschelle, Tatar and Kaput (2008), which focuses on 
the research (rather than the design) trajectory of the project 
and itself draws on and summarizes diverse earlier sources, 
including a number of different studies (Kaput, 2001; Kaput, 
Noss & Hoyles, 2001; Nemirovsky, Tierney & Wright, 1998; 
Nickerson, Nydam & Bowers, 2001; Nemirovsky, Kaput, & 
Roschelle, 1998; Roschelle, Kaput & Stroup, 2000). 

THREE DESCRIPTIONS OF SIMCALC DESIGNS
The issue of how the design of SimCalc technologies is de-
scribed has depended on the context of the description and 
on the unfolding of projects that have themselves depended 
on opportunistic factors such as the particulars of novel 
technologies, shifts in policy concerns, alignments with 
school districts, teachers and curricula, funding opportuni-
ties, and the developments of thought about pedagogical 
leverage. Indeed, we prefer to think of it as a representa-
tional infrastructure or set of design principles that are, and 
could be used, in other mathematics software (Hegedus 

& Morena-Armella, 2009; Noss & Hoyles, 1996). Under this 
rubric, a wide range of functions have been investigated 
(including new curricular materials available at: http://www.
kaputcenter.umassd.edu/products/curriculum_new/).

Nonetheless, in a major 2010 paper reporting the use of 
SimCalc in three large-scale randomized trials, the technolo-
gy is described as follows, with five components:

1. Anchoring students’ efforts to make sense of 
conceptually rich mathematics in their experience of 
familiar motions, which are portrayed as computer 
animations;

2. Engaging students in activities to make and analyze 
graphs that control animations;

3. Introducing piecewise linear functions as models of 
everyday situations with changing rates;

4. Connecting students’ mathematical understanding 
of rate and proportionality across key mathematical 
representations (algebraic expressions, tables, 
graphs) and familiar representations (narrative stories 
and animations of motion); and

5. Structuring pedagogy around a cycle that asks 
students to make predictions, compare their 
predictions with mathematical reality, and explain 
any differences. 
(Shechtman et al., 2010 p. 839)

These components are explained as follows:

The SimCalc MathWorlds software provides a ‘‘representa-
tional infrastructure’’ (Kaput et al. 2007; Kaput & Roschelle, 
1998) that is central to enabling this approach. Most 
distinctively, the software presents animations of motion 
(Figure 1). Students can control the motions of animated 
characters by building and editing mathematical functions 
in either graphical or algebraic forms. After editing the 
functions, students can press a play button to see the 
corresponding animation. Functions can be displayed in 
algebraic, graphical, and tabular form, and students are 
often asked to tell stories that correspond to the functions 
(and animations).… In addition to proportional and linear 
functions, students and teachers can make piecewise linear 
functions, which can be used to model familiar situations.
(Shechtman et al., 2010, p. 839-840)

and were accompanied by a picture (Figure 1).

These five definitional elements were largely present in 
Kaput’s 1994 description of what would become SimCalc:

“Imagine a pair of 12-year old students driving a comput-
er-simulated vehicle that provides a windshield view and a 
carefully linked user- or system-configurable collection of 
data displays for the dashboard; one set of displays for time, 
another for velocity, and a third for position. These include 
sounds for each set (metronome for time, engine pitch for 

http://www.kaputcenter.umassd.edu/products/curriculum_new/
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velocity and “echo” when passing 
roadside objects for position). The 
dashboard display can include 
velocity and/or position versus time 
graphs generated in “real-time” as 
well as clocks, odometers, tables 
and so forth. This “MathCars” 
system is designed to help link 
the phenomenologically rich 
everyday experience of motion 
in a vehicle to more structured 
and formal representations and 
to provide exciting and intensely 
experienced contexts for reasoning 
about change, accumulation and 
relations between them. 

After some unstructured driving 
trips, they are now planning to 
follow a school bus whose (highly 
variable) velocity has been specified 
beforehand based on (one-dimen-
sional) velocity data they collected 
on their own bus trip home the day 
before….” (Kaput, 1994, p. 391)

Aspects of this vision for the 
design appear in an even earlier 
picture as reproduced in Figure 2 
(Kaput, 1992, p. 540).

The major focus in this view is 
on authenticity of the motion 
phenomenon. However, the 
design focus in the 2010 paper is 
also mentioned:

“They will also set up and run 
simulated “ToyCars” on parallel 
tracks to study relative motion 
more systematically, describing 
the motion of each algebraically, 
confronting such questions as 
how to describe a later start versus 
describing a simultaneous start but 
from different locations…. ”  
(Kaput, 1992, p.392)

These two descriptions represent 
both views of the opportunity 
space, and perspectives on what 
constitutes research on learning. 
In fact, Kaput’s 1994 article reads 
like a mathematical proof. It 
makes arguments for a set of ap-
parently disconnected beliefs and 
circumstances, taking particular 

FIGURE 1. A picture used to explain a SimCalc Mathworlds microworld in the 2010 article. 
A position graph is shown related to the simulated situation shown in the “world” portion of 
the screen. The manipulation and animation functions are set in a window below. Playing the 
animation causes both the sweeping out of time on the position graph and the animation of 
the characters in the world. The motion of the character with the orange shirt (and rectangle) 
is described by the orange line while the motion of the character with the purple shirt (and 
rectangle) is described by the purple line. (Used with Permission.)

FIGURE 2. An Early Envisionment of SimCalc Mathworlds, circa 1992. The “experience” is 
shown as if through a windshield and the graph shows velocity as it sweeps out over time. 
(Used with Permission, quality as in the original.)



IJDL | 2014 | Volume 5, Issue 2 | Pages 83-100 89

care to unpack the relationship between the child’s physical 
interactions with the world, the child’s experience of physical 
interactions and the mathematician’s formalisms. It then 
assembles the findings into the vision quoted above. In 
contrast, the 2010 description is a starting place for explo-
ration of how a particular implementation of “technology + 
curriculum” fares as it faces the world. 

An Important Sidetrack

Despite the impressive similarities between the 1994 and 
2010 presentations, the five definitional elements were not 
obvious at the beginning. Instead, the focus on these five 
elements evolved and emerged throughout the life of the 
effort. With hindsight, we can see that the principles are 
consistent with the earliest designs even if they were not 
articulated in 1992 or even by 1994.

Kaput was very enthusiastic, in the beginning, about 
designing features that would engage students’ kinesthetic 
sense, such as the visual sense of the world “zooming by” 
both sides of the perceptual field. Over time, this design 
feature was de-emphasized. Likewise, Kaput was interested 
in supporting motion detectors to measure motion in the 
physical world and sensors to measure a student’s physical 
motion; these capabilities continued to be supported in 
the software, but became less important to the classroom 
experience of most users over time and played a smaller role 
in design thinking. 

On inspection, it might appear that the design process to go 
from Figure 2, the initial vision, to Figure 1, the eventual soft-
ware, was a straightforward elaboration of design principles 
specified at the onset. This was far from the case. Indeed, as is 
the case with many educational design processes, the team 
was distracted by “red herring” design principles which have 
nearly ubiquitous presence in public and scholarly discourse 
about learning technology. Then, as today, “games” were 
hot, and the team spent much time trying to translate the 
initial design concept into an educational game. Likewise, 
there was a belief that students would not pay attention 
to educational software unless it had the highest quality 
artwork and animations. In addition, advisors advocated for 
a rich “narrative” context as necessary to motivate students. 
Many of these concerns still loom large today as developers 
design modern software for mathematics learning.

Figure 3 illustrates an important path the design team 
followed for about a year and which turned out to be a 
dead end. Figure 3 is a screen shot of Alien Elevators, which 
was the first software designed by the SimCalc project, in 
1993 and early 1994. Looking back, Roschelle, who is one of 
our authors, said “What were we thinking?” The two other 
authors were puzzled by the image: “what is this?” And 
indeed, the reason this was design was abandoned is that 
students were similarly lost and not engaged in productive 
mathematics. Yet, this design was purposeful, and ultimately 
led to key insights. 

Much work went into an 
exciting narrative, about a 
journey to a planet where a 
lost alien society had dis-
appeared, but the elevators 
were still running, and a 
mystery had to be resolved. 
Students would have to learn 
some mathematics to solve 
the mystery: on this planet, 
elevators were controlled not 
by final destination but rather 
by setting their velocity in 
1-second increments. Further, 
velocity was indicated by a 
glyph—the strange triangles 
in the upper portion of the 
image. Students could expe-
rience being “on” the elevator 
as they travelled the lost alien 
world to solve the mystery—
and the lower right section 
showed an animation of an 
elevator door opening and 
closing like an camera’s iris on 
different floors. The lower left 
image was a controller which 

FIGURE 3. The “Alien Elevators” 1994 version of SimCalc created an interface that was gamelike, 
based on a narrative, and involved high-quality graphics but which submerged the mathematics. 
Students were asked to set velocity in 1 second increments (bottom left). They could see the alien 
elevator experience (bottom right). Velocity is shown by the glyphs at the top. 
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gave access to tools—such as more traditional graphs, by 
which the strange glyphs and the motion of the elevator 
might be analyzed. Figure 4 shows some of these tools in the 
form of an early design section—they included a velocity 
graph, a stylized position graph which included an “elevator” 
shaft which moved to the right on the horizontal axis with 
time and a clock. 

On reflection, the biggest failure in this design is that the 
mathematics was obscured by the narrative, game elements, 
and graphic art. When the SimCalc team turned away from 
this design thinking, the turn was towards an approach that 
was deeply mathematical and squarely focused on supports 
for students to conceptualize mathematics—with a much 
lighter touch on narrative, gaming, and graphic art.

Enduring Features

Despite the side-track of alien elevators, some key design 
differences between SimCalc as Kaput first imagined it in 
1992 were largely finished by 1997. These changes SimCalc 
Mathworlds were realized across five years through a process 
of considerable design research and included:

• The representation of motion shifted from a 1st 
person (“point of view”) perspective to a 3rd person, 
flattened perspective. Although the 1st person view 
is experientially compelling, it was hard for students 
to make connections between distance in a graph 

and distance in a windshield 
view. 
• The students’ opportu-
nity for control shifted from 
controlling via a gas pedal and 
brake to control by changing 
the graph itself (as indicated 
by the square control points 
on the graph in Figure 1). 
This followed the realization 
that by giving students the 
ability to construct the more 
mathematical representation 
(rather than just see it as an 
output) they could better 
come to understand what it 
meant. The output became 
the movement of the soccer 
players.
• The nature of the math-
ematical function changed 
from a curve to a piecewise 
linear function. This reflected 
important growth in under-
standing about mathematics 
education. In particular, the 
project learned that curves 
were cognitively difficult 
objects for students to make 

sense of and that the learning progression could 
eventually get to curves from piecewise functions by 
showing how functions made of smaller and smaller 
pieces could come to approximate curves.

• There is also a noticeable simplification in the 
number of display elements in the eventual SimCalc 
Mathworlds design, reflecting the insight that it was 
essential to focus the learner’s attention on a few 
representations at a time.

There is one contrast between Figures 1 and 2 that is not 
indicative of a design change: one image shows a velocity 
graph and the other shows a position graph. SimCalc 
MathWorlds has always had activities with both velocity and 
position graphs. 

Figures 1 and 2 present a snapshot of changes; however, 
the contrast does not adequately explicate the nature of 
the design. Hence, we now move to a broader overview 
of the set of SimCalc projects and the design thinking that 
emerged in them.

Importantly, the design principles that constitute the focus of 
this article were complemented by a larger implementation 
principle when SimCalc was introduced into a large number 
of classrooms between 1997 and 2005. The larger imple-
mentation principle is to present teachers with an integrated 
system of the software, curricular workbooks, and teacher 

FIGURE 4. Controls for the 1994 “Alien Elevator” version of SimCalc included a stylized position 
graph (bottom right), a velocity graph (top right), a clock and an elevator. The mathematics was 
difficult for students to perceive.
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professional development. The achievement of a stable 
learning effect when SimCalc is introduced in hundreds of 
classrooms is importantly not due only to software features. 
Rather, it also is the consequence of carefully designed 
workbooks that lead teachers and students through a 
curricular learning progression with the software (and 
including exercises and discussions without the software) 
and is a consequence of teacher professional development 
that encultures teachers into appropriate classroom use of 
the software.

An Overview of SimCalc Projects

The larger SimCalc project starts from an ideal of improving 
mathematical teaching and learning, a mechanism, the 
computer, and a series of perceptions about learning and 
learners. It developed into a family of projects, each of which 
explored a facet or aspect of the whole. One history of the 
effort is given in Roschelle, Tatar and Kaput (2008), with a 
focus on the processing of going from small design studies 
to larger classroom tests. A graphical timeline appears in 
Figure 5.

1992-1994: Planning

An initial planning period was concerned with the exam-
ination of curriculum, the history of mathematical thought 
and a review of the learning sciences. Also during this time, 
several years were spent conducting the microanalysis 
of very small numbers of students working with different 
designs for the representations. 

1994-1997: First Iteration

The first software design was implemented and then 
abandoned after less than a year. This design had an over-
arching narrative concept called “Alien Elevators” and was 
an extended game in which students would infer rules by 

which elevators were controlled on an alien planet, where 
the elevator buttons controlled velocity, not the target floor. 
This was abandoned because it was found in user testing 
that the story distracted students from the mathematics 
and the interface did not yield mathematical insights for 
students. However, one component of the interface was 
very productive for students and the project moved forward 
focused on this element. The element that was retained was 
a representation of velocity on a graph as a step function, 
where each step specified a constant velocity for a duration 
of time. 

The work of this time consisted of experiments with a small 
number of students in a lab, or short teaching experiments 
in a classroom, each examining how the emerging SimCalc 
Mathworlds dynamic representations could enable students 
to develop particular target mathematical understandings.

1997-1999: Working with Teachers and Classrooms

This was followed by a second phase, three years spent 
on curriculum, that involved different educational settings 
and partners---in Newark, NJ, Syracuse, NY and San Diego, 
California. Notably, sites were chosen to include diverse 
students who would not ordinarily go on to study calculus. 
In addition, tests were conducted with students at different 
grades, include middle school, high school, and early 
undergraduate years. At this time—while many of the ideas 
were beginning to gel but not yet set—there was enough 
stability to involve teachers and classrooms full of students. 
However, even after nine years of work and development, 
measurement of learning outcomes only used research-de-
signed pre-test/post-test assessments, consisting of items as 
created in response to the special purposes of the particular 
innovations. These projects resulted in an important diversity 
of curricular materials, variations of the software, and test 
questions. 

10
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Fig. 1 Timeline of SimCalc Research and Development 1993–2012
FIGURE 5. Timeline of the SimCalc project grants (Hegedus & Roschelle, 2013. Used with permission).
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2000 and after: Three Parallel Investigations

At this point, nine years into the project, it split. This split 
was did not reflect a lack of sympathy between project 
participants, but rather the need to pursue parallel avenues 
of exploration and therefore to involve people with expertise 
in those particular areas. There was good reason to believe 
that the core ideas were solid but it was not clear how they 
could become widely used. Three avenues were explored: 
technological, political and scientific. 

Technological explorations

The technological exploration started from the observation 
that, although most students had theoretical access to 
computers, only graphing calculators received widespread, 
frequent use. Therefore, the research turned to how smaller, 
less-expensive devices could be used to make the key 
affordances available. The small size of the devices pushed 
the research to explore distributed, social, networked 
activities (Hegedus & Kaput, 2004a, 2004b, 2003; Hegedus, 
Kaput & Lesh, 2007; Hegedus & Penuel, 2008; Hegedus & 
Roschelle, 2012; Dalton & Hegedus, 2013; Roschelle et al. 
2003; Tatar, Roschelle, Vahey & Penuel, 2003; Vahey, Tatar, & 
Roschelle, 2004, 2006). Some of this work was supported by 
Texas Instruments, building on a network infrastructure that 
they were developing and teacher professional develop-
ment facilities that they supported. Work with the graphing 
calculator was awkward because the screen was small with 
low resolution and calculator keys had to be repurposed to 
implement SimCalc Mathworlds functions. Therefore another 
avenue was also explored: the then novel (and now defunct!) 
Personal Data Assistant, in particular, Palm Pilot handheld 
computers. These devices provided infra-red beaming, a 
low-overhead technology nicely suited to classroom com-
munication (Tatar, Roschelle, Vahey, & Penuel, 2003; Vahey, 
Tatar & Roschelle, 2006; Vahey, Tatar & Roschelle, 2004). These 
projects led to the design of distributed activities that were 
social and fun but that always drew the student’s attention 
back to important and difficult mathematics. 

Political explorations

The political development had to do with influencing the 
key state mathematics examinations in Massachusetts. In 
particular, Kaput’s influence over the construction of the 
high-stakes examinations resulted in a more rational and 
principled framework. Kaput and Hegedus additionally 
worked on the construction of SimCalc-based curricula, 
which they conceived of as a progression throughout 
middle and high school (http://www.kaputcenter.umassd.
edu/products/curriculum_new/). 

Scientific explorations

The third avenue was scientific demonstration. From 2000 
until 2008, culminating in the 2010 paper, the project 
planned and then conducted a series of large-scale 

experiments, including randomized trials (Roschelle, Tatar, 
Shechtman, & Knudsen, 2008; Shectman et al., 2010; Tatar, 
Roschelle, Knudsen, Shechtman, Kaput & Hopkins, 2008). 
More than two thousand students, and 150 schools were 
involved. A pilot plus three different experiments with 7th 
and 8th graders in Texas demonstrated and replicated that 
SimCalc Mathworlds could produce significant learning 
gains in important mathematical concepts across a wide-
range of teaching circumstances. 

This level of demonstration was a triumph and should be 
seen not just as a confirmation SimCalc Mathworlds itself 
but also of the design-based research methods used at 
different scales throughout the early phases of the project. 
Such methods are necessarily complex, require intense 
scholarship, and can lead to substantial setbacks, as in the 
initial implementation; however, they can report real and 
important learning changes. The success of SimCalc at scale 
confirms the importance of support for the slow accretion of 
knowledge about learning and educational change.

Creating the assessments used in these experiments was 
difficult. It required over $1,000,000 in funding to develop, 
assessments that were altogether sensitive to the interven-
tion, spoke to teacher and administrator concerns about cur-
riculum, had the right reading and cultural properties, and 
could be administered within a classroom period. However, 
none of this development could have happened without 
pre-existing theories of learning and the roughly 700 test 
items gleaned from the classroom work over the years 
(as well as other scholarly studies of algebra learning also 
primarily supported by the National Science Foundation). 
The assessments used in these experiments are one example 
of an element that only worked because of diversity and 
persistence in the prior work.

The Changing Landscape

In theory, the technological, political and scientific elements 
of the project could have been more substantially supple-
mented by a fourth element, an economic strategy. Indeed, 
work with Texas Instruments moved in that direction and 
resulting, in part, in the TI nSpire handheld device. This 
device does incorporate dynamic representations, particu-
larly for geometry, graphing, and data; however, it stopped 
short of including SimCalc representations such as motion 
and editable piecewise graphs. Further, other dynamic 
representation-based projects, such as The Geometer’s 
Sketchpad, did pursue and succeed as business ventures 
(for a time); eventually, The Geometer’s Sketchpad was 
undermined by changes in the market and by the availability 
of a free, open-source clone. Furthermore, at the very time 
that these projects were attempting to improve and widen 
instruction in mathematics, policies such as No Child Left 
Behind (http://www2.ed.gov/nclb/landing.jhtml) were in 
essence causing teachers and districts to become more 

http://www.kaputcenter.umassd.edu/products/curriculum_new/
http://www.kaputcenter.umassd.edu/products/curriculum_new/
http://www2.ed.gov/nclb/landing.jhtml
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risk-averse (Dickey-Kurdziolek & Tatar, 2012). It may well be 
that economically self-sustaining models of adoption are an 
unrealistic burden on an intervention aimed at changing so 
many elements of existing practice at the intimate level of 
the learning invisible from outside the classroom. 

DESIGN RATIONALE 
With this overview of the construction and development of 
the family of projects until 2008, we consider the rationale 
behind, and the implementation of, each element of the 
2010 definition. These are the elements that, as the larger 
project has developed, have become assumptions in 
research papers. Yet the pedagogic opportunity lies in the 
details of how these elements are supported by the tech-
nology, and understood and utilized in the classroom. These 
are the elements that each teacher, curriculum designer, 
assessmentcreator, and technology designer needs to 
grapple with. 

Anchoring students’ efforts to make sense of concep-
tually rich mathematics in their experience of familiar 
motions, which are portrayed as computer animations

Kaput approached the ideas that would become SimCalc 
though historical, curricular and literature analysis. By the 
end of the 1980’s, some kinds of computational environ-
ments for learning allowed learners to connect formal 
algebraic expressions with graphical representations, so that 
the learner could “follow along.” Building on prior work exam-
ining mathematical representations, and starting as early as 
a 1992 publication, Kaput identified the context of motion as 
missing from instruction in Calculus (and algebra). 

Although the development of calculus was historically 
motivated by the desire to describe motion phenomena, in-
struction had virtually no relationship to authentic contexts 
that motivated the work itself. Indeed, often teachers explic-
itly reject the idea of using motion to introduce algebraic or 
calculus on the grounds that motion is not mathematics. It 
is, instead, physics. But motion is not only an academic topic 
that must be described in formal terms. It is also a universal 
human experience. 

Kaput perceived that integrating familiar aspects of motion 
into mathematics instruction could benefit students by 
allowing the redistribution of “sources of structure and 
action from the mental to the physical realm.” (1994, p. 394). 
However, Kaput’s initial thought about how to implement 
this experience evolved through small group work with 
children. The elements of realism that were featured so 
vividly in the original description were refined into more 
strategic and abstracted representations of motion seen in 
the “world” graphics. Although the earliest work resembled 
current approaches to games and game-like environments, 
this was soon dropped. While capturing student interest 

and engagement is important, and using existing student 
strengths, such as their experience of the natural world, is 
crucial, the experiences must not overwhelm or downplay 
the mathematics to be learned. 

The decision to implement motion as animations or depic-
tions in an artificial “world” allowed the scope of inquiry to 
be simplified to the representation of movement along a 
line (or, better yet, a number line!). This simplification created 
a congruence between the portion of motion depicted in 
the system and what was actually modeled in high school 
algebra. 

Other aspects of the early vision did not make it into the 
branch of exploration expressed in the 2010 description, 
albeit for pragmatic rather than pedagogical reasons. 2

Engaging students in activities to make and analyze 
graphs that control animations

Using proper notation is a metric of understanding of 
algebra and calculus; therefore, use of that notation is usually 
prioritized in instruction. Yet, arguably, the roots of student 
understanding lie not in algebra, but in the depiction of 
what is important about the motion phenomena. Graphical 
representations are less compact than algebraic ones; how-
ever, graphs are a more common, everyday representation. 
For example, one often sees graphs in the newspaper, but 
hardly ever sees algebra in the newspaper. 

In particular, like the motion itself, graphs can be animated 
over time. Contrast between the depiction of the motion 
in the “world” and the depiction of the graph help students 
learn how a graph represents. The graph is an abstraction, 
that, by its nature draws our attention to certain aspects of 
motion (change in position over time, change in velocity 
over time) which we suggest are important. 

The context of motion implicitly suggests that time might be 
an important thing to think about. The everyday description 
of motion utilizes time. The graphical representation of 
motion makes time an explicit element. But when we make 
time an explicit element, we change what we are showing 
about position, compared to an actual depiction of that mo-
tion. Thus, a graph, such as shown in Figure 1, does not show 
a picture of a person going up and down hills but rather a 
metric of the person’s displacement in two-dimensions. 

2 For example, a branch of pedagogical exploration considered 
collecting real data using motion detectors (ultrasound sensors 
from cameras), but did not become part of the mainstream project, 
because it would have introduced another object for schools to 
purchase. Yet, the exploration of physically-embodied phenomena 
and varieties of mathematical notations, and the use of hybrid 
physical/cybernetic devices embodying dynamical systems 
continued and continue (Brady, C. (2013). Perspectives in Motion 
(Unpublished doctoral dissertation). University of Massachusetts, 
Dartmouth, MA). 
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This point often seems simple to those who already know 
algebra, but it is hard to overestimate its importance to large 
categories of learners. In recent years, research has suggest-
ed that people differ in their ability to interpret different 
kinds of information. Some people, those who prefer 
linguistic kind of information, do well with current teaching 
and learning practices. Others already bring to the project 
of learning mathematics, a tendency to interpret depictions 
as symbolic. But a subset of students tend to see graphs as 
pictures (Hegarty & Kozhevnikov, 1999; Kozhevnikov, Kosslyn 
& Shephard, 2005). Even those who are inclined to see 
graphs as symbolic representations may become confused 
about the nature of a particular representation. 

Engagement with how a graph represents was enabled by 
a core innovation in the SimCalc approach: to make and 
edit graphs without having to edit the algebraic notation, 
and this gave students an easy way into manipulating 
mathematical representations of motion. Indeed, in the 
SimCalc approach, students often learn about graphs and 
tables before they encounter algebraic notation. Rather than 
starting with formal symbolic notations, students’ mathemat-
ical experiences are gradually formalized.

Animating graphs interacted with design decisions in ways 
that were not central to the mathematics but that were 
central to the HCI and pedagogical usability of the system. 
Drag-and-drop facilities meant that many graphs could be 
made and their motion consequences easily explored. One 
key interface element in enabling easy exploration was the 
implementation of snap-to-grid “hot spots” that allowed 
students to easily explore integer end-points. This was 
controversial because it compromised continuity, which is an 
important mathematical concept. However, pragmatically, 
trying to make lines do exactly the right thing can be a time 
consuming distraction. The downloadable version of SimCalc 
Mathworlds (http://www.kaputcenter.umassd.edu/products/
software/) allows users to turn off snap-to-grid facilities. 
Another set of difficult usability issues had to do with the 
relationship between grabbing and pulling function lines as 
compared to changing axes or labels in the world’s ruler or 
the Cartesian coordinate plane. 

These two elements, animation and tying animation to 
easily manipulated graphical representations, can lead to 
subtle but important curricular changes. In particular, one 
place that we lose active cognition amongst students is in 
introducing the idea of slope. Most students learn the slope 
of a line as a calculation of “rise over run”, often fixating on 
the identification of points that make the actual calculation 
easy. The slope then becomes one calculation among many, 
a calculation that, for mysterious reasons, is sometimes nega-
tive. SimCalc allows the teacher to ground an understanding 
of slope in a far more sophisticated context, a context in 
which rate is demonstrated to be instantaneous as it sweeps 
out, connecting the characters’ motions with their positions 

at a given time. Conceptualizing slope as a description of 
the relationship between time and position leads towards 
calculus without demanding the mastery of algebra and 
grounds the concept of negative slope as “going backwards”. 

Another kind of curricular change permitted by SimCalc rep-
resentations is the more coherent presentation of proportion 
as a reduced case of rate in which the line just happens to 
go through 0. Proportion is a major middle school topic, but 
often is presented merely as a “calculate the missing quanti-
ty” problem, where three numbers are given and the fourth 
must be calculated using the formula “a/b = c/d.” Of course, 
this formula can be useful to permit calculations to figure 
out how much 5 pounds of potatoes will cost if potatoes are 
$3/2 pounds. However, it is also a mathematical dead end—
it doesn’t lead anywhere in further mathematics. SimCalc 
represents proportion instead as a constant of proportionali-
ty, k, in y=kx, which is the slope of a line. The analysis of slope 
as a ratio, k = y/k, and a proportional function as a simple 
case of a linear function, allows a trajectory of mathematical 
development that continues from middle school through 
calculus.

Introducing piecewise linear functions as models of 
everyday situations with changing rates

Traditional instruction in algebra and calculus emphasized 
the definition of a function and the importance of continuity 
in the definition of a function. The continuity assumption is 
key to the ability to calculate inherent in Calculus. But those 
students who went on to become engineers would go on to 
use piecewise functions extensively, because many physical 
systems are best modeled not as one continuous curve but 
as discontinuous segments that may each be represented as 
linear (at least well enough for their engineering purposes). 

All motion of an object over time is continuous. However, 
people’s experience of motion is not continuous. One of 
Kaput’s major insights from the first iteration was that, by 
introducing piecewise linear graphs earlier and delaying the 
introduction of the idea of continuity, many important ideas 
could be introduced earlier and more effectively into the 
curriculum to a wider range of students. This notion utilizes 
the principle of building on existing student strengths, but it 
is legitimized by engineering practices.

This representation was easy for students to control, by ad-
justing the height and width of rectangle “chunks” of velocity 
(where the height was speed, the width was time, and the 
area represented change-in-position). It also turned out 
that students could easily understand the area as position 
change, and this led to interesting mathematical challenges, 
such as finding different ways to move 6 meters (see Figure 
6). 

http://www.kaputcenter.umassd.edu/products/software/
http://www.kaputcenter.umassd.edu/products/software/
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Further, the velocity graphs could be related to piecewise 
position graphs, which were also found to be productive in 
terms of student insight. Figure 7, for example, represents a 
complex way to get to a final position of 6 meters, but with 
changing speed and backwards motion.

The introduction and prioritization of graphical experience 
with piece-wise linear models is the cross-cutting computa-
tional, pedagogic, and conceptual insight that democratizes 
access to the math of change and variation. By enabling 
students to work with piecewise linear functions, that is, 
functions over a limited domain, we can let them explore 
the descriptive properties of the mathematical language we 

are introducing first, before showing 
them that the physical experiences of 
motion that arise as a consequence of 
being human are not precisely what 
Newton was modeling in creating that 
mathematical language. 

A key activity used in conjunction 
with piecewise linear functions is 
the “exciting sack race” lesson. This is 
the more developed form of “driving 
behind a school bus” from the original 
conception. The students are given 
or create one function representing a 
person who runs a race at a constant 
speed over some domain (the straight 
line in Figure 1). They then have to 
create another line, representing a 
“crazy” race---like a sack race---putting 
together functions piecewise on the 
graph. The only rules are the race 
must start at time=0 and end in a tie. 
Subsequently, students are asked to 
write (in words) the story of the race. 
Often these stories are on the order of 
“Jane started really fast, but then she 
realized that she had forgotten her 
sunglasses so she ran back to the start-
ing line to get them, but by then she 
was so exhausted that she couldn’t run 
as fast, so she moved along, but she 
started staggering and being confused 
and sometimes went backwards until 
she finally stopped for a while. That 
gave her a rest, so she finished really 
quickly.” Some or all students read their 
stories aloud, while the class looks at 
their graphs. Sometimes, teachers ask 
students to exchange these stories, 
and as the new person to draw the 
function line from just the story. Then 
the students compare the original and 
the new lines. This is usually fun, but 
also motivates the future use of more 

precise, specialized mathematical language.

In particular, by starting with graphs as compared to 
algebraic expressions, by tying those graphs to motion 
phenomenon and finally by allowing the graphs and the 
motion to model complex motion phenomenon, student 
learning can be grounded in the desire to represent tractable 
and interesting problems. This enables complex material to 
be taught significantly earlier in the curriculum, and indeed 
elements of the core idea in SimCalc have been taught as 
early as 5th grade (9-10 years old). 

FIGURE 7. Piecewise graphs are easier for children to understand than continuous ones.

FIGURE 6. Changes in velocity: different ways to move six meters.
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Both the inclusion of motion phenomenon in mathematics 
and the emphasis on animating graphs allows changes to 
the curriculum and changes in emphasis within existing 
curricula. However, the introduction of piecewise linear 
functions requires a shift in thought about the core material 
taught in Calculus. The graphical, piecewise approach 
motivates the more succinct expressions found in Algebra 
and Calculus. 

Connecting students’ mathematical understanding 
of rate and proportionality across key mathematical 
representations (algebraic expressions, tables, graphs) 
and familiar representations (narrative stories and 
animations of motion)

SimCalc turns algebra upside down by introducing piece-
wise functions early and also by introducing graphical 
interpretations of rate and proportionality, and allowing 
grounded explorations of slope. Graphical understandings 
are important in their own right, but they are also important 
in two other ways: as a pathway to other (algebraic) under-
standings and as a pathway towards understanding the 
system that compromises the mathematics of change and 
variation. Each kind of representation---computer models 
of the “world”, graphs, tables and algebraic expressions, 
even word-based stories---emphasizes different aspects of 
the system, some of which are more usefully mathematical. 
Exercises that ask students to move across different repre-
sentations develop fluidity and familiarity. 

One could say that SimCalc projects a different image of 
what it means to “know” algebra. In a traditional symbolic 
approach, knowing algebra is often tantamount to knowing 
the grammatical transformation rules that correctly re-write 
one expression into another form. SimCalc still honors this as 
important, but aligns with an image of “knowing” which has 
to do with connections among representations. In this view, 
“knowing” a concept like rate means being able to coherent 
trace the connections of the concept in different forms—to 
be able to see rate as an experienced speed, a slope of 
a graph, covariation in a table of number pairs, and in a 
symbolic form. For students to build this connected sense of 
“knowing” algebra, they need tools which help them make 
the connections. SimCalc is squarely aimed at this connected 
epistemology.

One of the design challenges associated with this epistemol-
ogy is that students cannot reasonably make all connections, 
all at once. Thus connections among representations must 
be introduced gradually, which corresponds to giving 
students access to different visual representations only as the 
master prior representations. In the early versions of SimCalc 
Mathworlds, this was handled by developing generic and 
powerful software which could show all possible representa-
tional forms, but configuring the software in saved docu-
ments. Teachers and students could then load documents 

in a sequence corresponding to the learning progression in 
a curricular workbook. More recently, the application/doc-
uments approach has been superceded with cloud-based 
solutions which deliver variant representations to students 
through activities arranged in a playlist.

Structuring pedagogy around a cycle that asks stu-
dents to make predictions, compare their predictions 
with mathematical reality, and explain any differences.

This concept was always inherent in SimCalc Mathworlds 
in that the point draws student attention to aspects of the 
world and models that they might otherwise overlook. 
However, the idea of an explicit cycle of comparative predic-
tion centered on the problem at hand developed slowly over 
time, and in conjunction with other related theorizing. One 
highly related pedagogical move is articulated by Schwartz 
and Bransford (Bransford & Schwartz, 1999; Schwartz & 
Bransford, 1998) as contrasting cases. The chief idea is that 
the designer or teacher creates a situation that makes the 
problem that will eventually be solved in the lesson clear 
before offering the solution. 

The original conception of SimCalc was that the children 
would explore. Enabling exploration is still a key principle. 
However, exploration by itself does not necessarily lead to 
learning—for example, students may get to “solution states” 
for a particular challenge by exploration, but may not know 
how they got there. The predict-compare-explain cycle is 
meant to engage students in overt planning and reflection, 
with an eye towards developing stable explanations of 
the mathematical representations they are using. Further, 
the cycle plays into conventional classroom structures, 
where teachers lead discourse and ask students to make 
predictions and give explanations, as a way to check for 
and cultivate desired understandings. The commitment to 
classroom-based instruction means that the technology and 
related curriculum must respond to the teacher’s need to 
ensure that certain material is encountered. 

The predict-compare-explain cycle may be used in whole 
class activities. Additionally, often SimCalc is used with work-
sheets that ask students, as individuals or in small groups, to 
engage in specific activities and record the history of their 
interaction with the system and the lesson. The cycle is a 
generally beneficial practice that particularly helps ensure 
that the student thinks about and processes that she or he is 
experiencing.

The development and exploration of this principle is a 
design response of the SimCalc project to the problem of 
enabling both structured progress and exploration. It is a 
design response implemented in curriculum and use-prac-
tices rather than in the technology itself. It is thus aligned 
with some research on classroom orchestration (Dillenbourg 
& Jermann, 2010; Dillenbourg, Zuffrey, Alavi, Jermann, Do-
Lenh, Bonnard, & Kaplan, 2011), but differs from responses 
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that implement process in the technology itself, via scripts 
and successive disclosure of information (Diziol, Rummel, 
Spada, & McLaren, 2007; Fischer, Kollar, Mandl, & Haake, 
2007).

FUTURE EXPLORATION
The five elements of the 2010 description and the associated 
practices are key and enduring pedagogical contributions of 
the SimCalc project. However, a number of issues have fallen 
by the wayside, not through any lack of merit. 

1. Physically embodied algebra learning. SimCalc 
long anticipated the importance of embodiment in 
learning, but with the arrival of the DYI movement 
including Raspberry PI’s, Arduino’s and really inex-
pensive sensors and actuators, new opportunities 
are cropping up that have a chance of having impact 
in real K-12 classrooms. 

2. Encompassing curriculum. When Jim Kaput passed 
away suddenly in 2005, he and Stephen Hegedus 
were in the process of creating an ambitious 
curriculum that reconceptualized the mathematics 
of change and variation from sixth to twelfth grade. 
This project was pursued by Hegedus and has to 
some extent been picked up and continued in the 
context projects housed at Roschelle’s Center for 
Technology and Learning, but suffers from the lack of 
Kaput’s single-minded focus.

3. Restriction of curricular scope. In order to encourage 
teachers and districts to use SimCalc, exploration has 
focused primarily on a high-impact setting, that of 
algebra learning. Algebra is indeed very important. It 
is the gateway course into four-year colleges in the 
United States. Enabling children to learn algebra and 
learn it well is a therefore a social justice issue that 
transcends other aspects of education. But Kaput’s 
vision started with the phrase “democratizing access 
to the mathematics of change and variation.” The 
project of creating a development sequence focused 
on this mathematics that would grow from middle 
school through college is as of yet, not complete. 

CONCLUSION: DYNAMIC REPRESENTATIONS 
AND THE PROBLEM OF WICKED PROBLEMS
The fundamental advance in the SimCalc line of work has 
been to develop a principled design of a dynamic represen-
tation system for learning an important and difficult area 
of mathematics, conduct research deeply interconnecting 
that design with cognitive, developmental and pedagogical 
knowledge bases, and further expand the work to edu-
cational evaluations that show the learning gains that are 
achievable in diverse populations at the scale of hundreds 
of schools and thousands of students. Further, throughout 
the course of doing this work, the team has been reflective 

about refining their account of the key principles in the 
design.

The design story is thus a story of progress, but also a story of 
how complex the realization of the deep, transformative po-
tential of technology in mathematics learning is. Technology 
is not a singular, causal factor in promoting learning and 
design of successful learning experiences but involves 
interweaving multiple concerns and levels of design. 

In his one and only paper, Berkeley architecture professor 
Horst Rittel (Rittel & Webber, 1973) advanced the idea of the 
wicked problem in design. Wicked problems exist in contrast 
to tame problems. Tame problems (1) have single-valenced 
solutions and (2) require only that a person figure the solu-
tion out. Wicked problems do not necessarily have solutions. 
Furthermore, wicked problems are such that the exact 
formulation of the problem is tied to the kinds and ranges of 
solutions we consider. 

One lesson from the SimCalc project is that important 
problems in education are wicked problems (Tatar, 2007). 
They must simultaneously determine the utility of technol-
ogy, whose own properties are constitute wicked problems, 
in relationship to curriculum that may be designed in many 
different ways for promoting learning—which itself remains 
ultimately mysterious—in the tremendously complex 
environment of classrooms and schools. To begin to do this, 
and to keep the difficult exploration going, requires not just 
devotion and wide-ranging expertise, but the garnering of 
funding from sources with different requirements, expertise 
in the management of teams, and the ability to focus on the 
whole and the parts at the same time. 

In the end, diffusion of innovation is not simple either. 
Deeply accepting Kaput’s premise of representation change 
means sometimes not addressing today’s curricular expec-
tations and end-of-the-year examinations directly—but can 
result in changing the sequence of learning, so that learning 
accomplishments occur in different years and time frames 
than what is conventionally expected. It may also include 
changing the expected outcomes, which, after curricular 
changes, may not be fully measured by existing examina-
tions. Kaput aimed his designs at addressing long-term 
societal change, which can mean that the designs do not 
tackle short-term desires to increase today’s test scores 
fully—and can result in slow adoption. 

And yet, historically we are clearly in the midst of transfor-
mation in what people need to know and be able to do to 
fully participate in an information age economy. Designs that 
democratize access to ways of thinking and reasoning that 
have long-term societal value, such as the ability to reason 
mathematically about change, have a likelihood of long-term 
societal impact. The opportunity to design effective dynamic 
representations—representations which express mathe-
matical meaning through interactive, linked, time-based 
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properties and give a wider range of people the opportunity 
learn and master corresponding ways of reasoning mathe-
matically—is a wicked design problem worth solving. 
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