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This paper discusses a method for converting time 
issue into space issue in the design process. During 
the design process, we often determine something 
that can be evaluated only after the design process 
has proceeded for a while. However, in some cases, 
this kind of a problem (the back and forth problem) can 
be converted into a spatial problem. In this paper, the 
author approaches the design space forming process 
in which the function is decomposed, as an example 
of the back and forth problem, by extending our 
previous mathematical discussion and using computer 
simulation. The author shows that conserving the 
similarity between the space for the required function 
description and the space for the decomposed function 
description is a key to solve the back and forth problem. 
This result indicates that forming an appropriate space 
for the decomposed functions for searching the design 
solution in an efficient manner is replaced by the 
criterion of similarity conservation. In other words, it 
is possible to analyse the back and forth problem in the 
design process by converting it into a spatial problem.

Keywords: back-and-forth problem, spatial problem, similarity, 

simulation

INTRODUCTION
This paper discusses, particularly by focusing on 
the back and forth problem, a method for converting 
time issue into space issue in the design process. 
During the design process, we often determine 
something that can be evaluated only after the 
design process has proceeded for a while.

For example, let us consider the process of 
synthesizing two concepts. This process is regarded 
as the simplest and most essential process in 
formulating a new concept from the existing ones. 
Here, the term ‘‘concept’’ is used to represent the 
image regarding an object held in mind that existed 
in the past, exists now, and will exist in the future. 

From an empirical viewpoint, the invention of the 
art knife  the first snap-off blade cutter  is a good 
example (Figure 1). The inspiration for this incredible 
idea came from the synthesis of two concepts  
chocolate segments that can be broken off and 
sharp edges of broken glass (Taura et al., 2005).

Although this invention is rather attractive, the 
problem of focusing on the chocolate remains 
unsolved. In other words, why is the chocolate 
focused on? Generally, the chocolate is 
unconcerned with the knife. It is extremely difficult 
to select the concepts to be synthesized before 
synthesizing them because the appropriateness of 
selecting the concepts can be evaluated only after 
they have been synthesized and the newly created 
concept has been judged.

We can consider the second example of the 
back and forth problem in the reasoning type of 
synthesis. Many studies adopt the view that the 
abductive pattern of reasoning shown below is 
characteristic for the reasoning in the design 
process, such as from function to form.

Premise p ⟶ q 
Premise q 
— 
Conclusion p

Further, some discussions have clarified that 
the pattern of reasoning in the design process is 
modelled as shown below (Roozenburg, 2002).

Premise q 
— 
Conclusion p ⟶ q 
Conclusion p
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In this case, there exists only one premise, and the 
rule p⟶q becomes part of the conclusion. In other 
words, at the time of reasoning (creating) a new 
concept (design solution), the rule must be part of 
the conclusion and must be inferred together with 
the antecedent. This discussion also suggests 
the existence of the back and forth problem. It is 
extremely difficult to select or form the rules to 
be used for reasoning the design solution before 
inferring it because the appropriateness of selecting 
or forming the rules can be evaluated only after they 
have been applied and the newly created concept 
has been judged.

The third example of the back and forth problem in 
the design stage can be recognized in the process 
of forming the design space (hereafter referred to 
as design space forming process). A design process 
is often defined as a solution-searching process in 
a given design space. In this case, the manner in 
which to select or form an appropriate design space 
is an essential problem. In other words, selecting 
or forming the appropriate design space that is to 
be used for describing and searching the design 
solution before the search process is extremely 
difficult. This is because the appropriateness of 
selecting or forming design space can be evaluated 
only after the new design solution has been 
searched for and judged.

As mentioned above, the back and forth problem 
from the viewpoint of time is an essential and 
unresolved problem in the design.

On the other hand, the back and forth problem is 
directly or indirectly involved in other fields such as 
manufacturing scheduling (for example, Giffler & 

Thompson, 1960) or packing problem (for example, 
Sweeney & Paternoster, 1992). Furthermore, the 
back and forth problem is regarded as one of the 
fundamental issues in the solution search problem 
that have recently been aggressively approached, 
such as the lazy evaluation problem (Launchbury, 
1993).

AN APPROACH FOR THE BACK AND FORTH 
PROBLEM
In some cases, the back and forth problem can be 
converted into a spatial problem. For example, let us 
consider the path of the light beam shown in Figure 
2, wherein we attempt to discover the light beam 
that passes from A to B by reflecting on the mirror.

If we attempt to predict the path of the beam based 
on the knowledge that ‘‘a light beam travels along 
the path which takes the shortest time’’, we are 
unable to evaluate whether or not the path takes 
the shortest time before the beam has travelled. 
However, if we apply the knowledge that ‘‘the angle 
of incidence is equal to the angle of reflection’’, then 
it is possible to calculate the path of the light beam 
before observing the travelling beam. In this case, 
the back and forth problem from the viewpoint of 
time is converted into a spatial problem.

Figure 1. Design 
idea for an art 
knife by com-
bining two con-
cepts – glass 
and chocolate.

Figure 2. An example of converting time issue to space issue – 
a light beam travelling path.
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Astudy of the General Design Theory (GDT) 
(Yoshikawa, 1981) provides a hint in this direction. 
The GDT defines design knowledge and the design 
process using mathematical topological space. 
It defines the design process as a mapping from 
function space, where the design requirement is 
described, to attribute space, where the design 
solution is searched. Previous studies on GDT 
have derived many theorems that can explain the 
characteristics of design knowledge and the design 
process. In this paper, the author approaches the 
design space forming process as an example of the 
back and forth problem, by extending our previous 
study based on GDT.

In the early stage of the design process, the 
required functions are generally decomposed into 
some partial functions. Although this decomposition 
process is not always necessary in finding design 
solutions, it is well known that it is useful in the 
design process. Not only has its importance been 
pointed out in an empirical study (Pahl & Beitz, 
1988) but also its rationale has been analysed in a 
theoretical study (Taura, 1995).

Although the importance and necessity of the 
function decomposition process is accepted in both 
industry and academe, its methodology has not been 
thoroughly clarified. Considering that the function 
decomposition process is divided into (1) the 
process of forming a function space for describing 
the decomposed functions and (2) the process of 
establishing a decomposed function structure for 
searching the design solution, the former process, 
in particular, has not been clarified. Although Suh 
(Suh, 1990) pointed out that the required function 
should be decomposed in an independent and brief 
manner, the mechanism of forming the space for 
the decomposed function has not been analysed. In 
this study, the design space forming process for the 
decomposed functions is analysed as an example 
of the back and forth problem; this analysis is 
particularly carried out by focusing on the problem 
of determining the classes (defined later) that are 
used to describe the decomposed functions.

METHOD FOR STUDYING THE BACK AND FORTH 
PROBLEM IN DESIGN
In general, it is extremely difficult to study the 
design process because this phenomenon occurs 
in the human brain. We cannot observe this 

phenomenon directly. Thus far, the protocol analysis 
method has been used to observe the phenomenon. 
However, its accuracy is limited. Modelling design 
process is another method that is used to analyse 
the characteristics of the design process. There 
exist two methods for modelling the design process: 
mathematical modelling and computer simulation. 
Both these methods are effective with regard 
to studying the design process. In the author’s 
previous study, the function decomposition 
process was determined in a precise manner, and 
its nature was discussed mathematically using 
GDT (Taura & Yoshikawa, 1992). In this paper, the 
author approaches the back and forth problem by 
extending our previous mathematical discussion and 
using computer simulation.

METHOD
Basic idea
In our previous study, we proposed the following 
hypothesis (Taura & Yoshikawa, 1992).

Hypothesis 1: ‘‘In function decomposition, the 
elements that are near each other in the space for 
the required functions are mapped onto elements 
that are near each other in the space for the 
decomposed functions in some cases.’’

This hypothesis implies that between two machines, 
if the function structures that are described using 
the decomposed functions are near each other, 
they manifest similar functions as a whole, and the 
inverse is also valid. This hypothesis is explained 
using the example in Figure 3. First, let us define the 
following terms.

Def. 1 Total function is defined as a function that is 
manifested by an object (machine) as a whole.

Def. 2 Partial function is defined as a function that 
is manifested by a component of an object 
(machine). 

Def. 3 Partial function structure of an object 
(machine) is defined as a subset of the partial 
functions manifested by the object (machine).

In this case, it is assumed that the total function 
cannot be determined from the partial function. 
The total function becomes clear by calculating the 
attributes of all the components which compose the 
object (machine).
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Let us consider the relation between a total 
function and a partial function structure based on 
the example provided in Figure 3. In this example, 
let the arrows in this figure be regarded as the 
behaviours and the function be described as the 
categories of the behaviours ({Rotational, Straight-
Line} of {Input, Output}, Speed is {Amplified, Equal} 
between Input and Output). First, let us examine 
the total function of these machines. It is found 
that both these machines manifest the same total 
function, such as ‘‘Input is Rotational Behaviour’’, 
‘‘Output is Rotational Behaviour’’ and ‘‘The Speed 
of Behaviour is Amplified’’. Next, let us examine the 
partial function structure of these two machines. 
It is understood that MACHINE(1) comprises some 
components  a first gear, a rack and a second 
gear. The first gear has functions such as ‘‘Input 
is Rotational Behaviour’’, ‘‘Output is Straight-
Line Behaviour’’ and ‘‘The Speed of Behaviour is 
Equal’’. The rack has functions such as ‘‘Input is 
Straight-Line Behaviour’’, ‘‘Output is Straight-Line 
Behaviour’’, and ‘‘The Speed of Behaviour is Equal’’. 
The second gear has functions such as ‘‘Input is 
Straight-Line Behaviour’’, ‘‘Output is Rotational 
Behaviour’’, and ‘‘The Speed of Behaviour is 
Amplified’’. In the same manner, the partial function 
structure of MACHINE(2) is as follows. The first 
lever has functions such as ‘‘Input is Rotational 
Behaviour’’, ‘‘Output is Straight-Line Behaviour’’, 
and ‘‘The Speed of Behaviour is Equal’’. The second 
lever has functions such as ‘‘Input is Straight-Line 
Behaviour’’, ‘‘Output is Straight-Line Behaviour’’, 
and ‘‘The Speed of Behaviour is Equal’’. The third 
lever has functions such as ‘‘Input is Straight-Line 
Behaviour’’, ‘‘Output is Rotational Behaviour’’, 
and ‘‘The Speed of Behaviour is Amplified’’. In 
this case, one will notice that both the partial 
function structures are the same, although they 
comprise different mechanical components. As a 
result, similarity in the partial function structures 

is obtained between two machines that manifest 
the same total function, but comprise different 
mechanical components. 

In our previous study, we simulated the function 
decomposition process and showed that design 
solutions can be found in an efficient manner by 
adopting this hypothesis. However, this simulation 
was operated in the spaces defined in an ad hoc 
manner. In particular, the classes that are used 
to describe the partial functions (viewpoints for 
recognizing the partial functions) are usually defined 
in an ad hoc manner. In the example of Figure 3, the 
classes for the partial functions are determined in 
the same manner as those for the total functions. 
Therefore, the following question is raised: ‘‘How is 
the most appropriate space for the partial function 
formed?’’

In the design process, the process of forming the 
space for the partial functions precedes the process 
of establishing a partial function structure for 
searching the design solution. Although the space 
for the total function can be formed on the basis of 
the fact that the design specification is described, 
the space for the partial function cannot be fixed 
because we cannot find a rational criterion to 
evaluate the space.

One can assume that the space for the partial 
function is formed in order for the design solution 
to be found in an efficient manner. However, the 
following question is raised: ‘‘How can the designer 
find the space for searching the design solution 
efficiently, before beginning to search?’’

In order to discuss this problem in a scientific 
manner, the author extends our previous discussion. 
The similarity conservation between the space 
for the total function and the space for the partial 
function structures was the key to form the function 
space. Let us consider this idea by using the 
examples in Figure 3 again. If we focus on the partial 
functions from another viewpoint, for example, 
colour, we cannot find any similarity between these 
two machines, and it may be easily assumed that 
this viewpoint is not useful for finding a design 
solution. This discussion suggests that the similarity 
conservation between two spaces is strongly 
related to the design space forming process. In 
other words, Hypothesis 1 is valid only when the 

Figure 3. An example of function similarity between machines.
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design solution can be found in an efficient manner. 
Therefore, we proposed the following hypothesis 
(Taura & Tobita, 2003).

Hypothesis 2: ‘‘In order to find a design solution 
using the space for the partial functions efficiently, 
the space for the partial function should be formed 
so that the elements that are near each other in 
the space for the total functions are mapped onto 
elements that are near each other in the space for 
the partial functions.’’

Mapping criterion
In this study, the author defines the criterion for 
evaluating the degree of similarity conservation 
between the space for the total functions and 
the space for the partial functions (Figure 4). 
By applying this criterion, we can find a more 
appropriate space for the partial functions.

Methods of searching
A computer system is implemented and the 
above method is simulated in order to investigate 
the manner in which the degree of similarity 
conservation between the Total Function Space 
(TFS) and the Partial Function Space (PFS) is 
related to the efficiency of searching for a required 
machine. In this simulation, we use a method to 
search for a required machine, which is referred to 
as a ‘‘Gradually Approaching Search’’ in this study.

Definition of the function space. 
In this study, the function spaces are defined as 
follows in set theory. 

Def. 4 The TFS is defined as a space whose 
elements are objects (machines), and its 
classes (subsets of elements) are the objects’ 
total functions. 

Def. 5 The PFS is defined as a space whose 
elements are objects (machines), and its 
classes (subsets of elements) are generated 
by classifying the objects from the viewpoints 
of their components’ functions. 

Def. 6 The distance between two objects (machines) 
that expresses the distance between two 
elements in one space is defined as follows. 
Consider two elements in the total function 
space  s1 and s2  that express the total 
function of the two objects (machines). They 
share A number of classes, and they do not 
share B number of classes. The following 
formula can be obtained as the distance 
between the two objects (machines).

                 B     d=
    A+B (1) 

In the PFS, the order of the classes (partial 
function) is also considered. 

Def. 7 The degree of similarity conservation between 
the TFS and PFS is defined as follows. 
When the distances between the standard 
element and all other elements in the PFS are 
dpn(n =1,2,3,...,N); and those in the TFS after 
mapping are dtn(n =1,2,3,...,N); the degree of 
similarity conservation between the TFS and 
PFS (S) is calculated by using the following 
formula. The maximum of S is 1.0, and the 
minimum of S is 0.0.

Figure 4. Difference in 
the degree of similarity 
conservation between two 
spaces
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                      N 
           ∑ |dtn dpn| 

             S= 1.0−  —————— (2) 
              

n =1

  N

The Gradually Approaching Search.
In the Gradually Approaching Search, initially, the 
neighbourhood of the standard element is selected 
in the PFS. Following this, the components that 
correspond to the partial function are searched, 
and the total function is determined. Next, the 
searched elements in the PFS are mapped onto the 
TFS. One machine closest to the required machine 
is selected. If it satisfies the required total function 
completely, the search ends. If it does not, the 
selected machine becomes a new standard element 
and the loop is repeated until the required machine 
is found (Figure 5). This algorithm is shown in Figure 
6. This searching models the situation in which a 
designer finds a required function after changing 
the composition of the partial function in a gradual 
manner.

SIMULATION USING THE GRADUALLY 
APPROACHING SEARCH
We conducted computer simulation as follows.

Setting up this simulation
A required machine is searched using randomly 
generated PFSs in order to observe the relationship 
between the similarity conservation of spaces 

and search efficiency. In this computer system, 
the data pertaining to 30 components are stored, 
and one known machine and the total function of a 
required machine are inputted; then, a combination 
of components that fills the required total function is 
outputted. The setup of this simulation is as follows.

1. We prepare 30 components, the mechanisms of 
which are simple (gear, belt mechanism, cam, link 
mechanism, spring and so on).

2. All the machines comprise three components. The 
total number of component combinations is 718.

3. Each component has five attributes. Two 
attributes are behavioural ones: ‘‘Input 
Behaviour’’ and ‘‘Output Behaviour’’. The other 
three attributes are numerical ones: a change of 
speed between Input and Output, the direction 
of ‘‘Output’’ from ‘‘Input’’ on the X-axis, and the 
weight of the component. These three attributes 
have numerical values (−9⁓9). 

4. Six types (value of attribute) of behaviour 
are prepared for Input Behaviour and 
Output Behaviour: ‘‘Horizontal Straight-Line 
Movement’’, ‘‘Vertical Straight-Line Movement’’, 
‘‘Horizontal Reciprocating Movement’’, ‘‘Vertical 
Reciprocating Movement’’, ‘‘Rocking Movement’’, 
and ‘‘Rotational Movement’’. 

5. The three numerical attributes of a machine 
are calculated by summing the values of the 
attributes of the three components composing the 
machine, while the values of the two behavioural 
attributes of the machine are determined as 
the value of the attribute of Output of the third 

Figure 5. Mechanism of the ‘Gradually Approaching Search’.

Figure 6. Algorithm of the ‘Gradually  Approaching Search’.
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component. Each function is represented using 
a function name and its value, which is assigned 
by dividing the numerical attributes into three 
groups or by describing the attributes of Output of 
the third component. For example, if a machine’s 
numeral value for weight is under 7, the machine 
has the function of its whole weight being light. 
If the value is under 7 and beyond 7, the machine 
has the function of its whole weight being 
medium. If the value is beyond 7, the machine has 
the function of its whole weight being heavy.

6. One known machine is prepared in advance. It is 
the standard machine in the simulation. Its Input 
Behaviour is Horizontal Straight-Line Movement, 
and its Output Behaviour is Vertical Reciprocating 
Movement. The change of speed between Input 
and Output is ‘‘Equal’’ throughout the machine; 
the direction of Output from Input on the X-axis 
is ‘‘Almost Zero’’ and the machine’s weight is 
‘‘Medium’’. This machine comprises component 
numbers 12, 25 and 29 (Figures 7 and 8). 

7. With regard to the required function, its ‘‘Input 
Behaviour’’ is ‘‘Horizontal Reciprocating 
Movement’’, and its ‘‘Output Behaviour’’ is 

‘‘Vertical Straight-Line Movement’’; the change 
of speed is ‘‘Decrease’’ throughout the machine; 
the direction of Output from Input on the X-axis is 
‘‘Plus’’; and the weight of the machine is ‘‘Heavy’’. 
The distance between this machine and the 
standard machine is 0.7 in the TFS. 

8. The simulation is completed when the required 
machine is found. The search efficiency is defined 
as the reciprocal number of times that the loop is 
repeated before finding the required machine.

9. In the PFS, the functions of 30 components are 
classified into six classes which are determined 
as partial function. 

10. The PFS is generated at random and for each 
PFS, 50 simulations are tried and their average is 
shown. 

11. During the search, the degree of similarity 
conservation between the TFS and PFS can be 
changed since the standard machine changes. 
Therefore, the average degree of similarity 
conservation between the TFS and the PFS 
throughout the entire search is shown. 

12. The maximum number of searching loops is 300. If 
a required machine is not found in 300 loops, then 
it is considered that the required machine cannot 
be found.

Result of the simulation and discussion
The relationship between the average degrees 
of similarity conservation of spaces and search 
efficiency is shown in Figure 9,which shows that 
the conservation of the similarity between the PFS 
and TFS throughout the search is related to the 
improvement in the search efficiency.

Figure 7. Struc-
ture of a standard 
machine.

Figure 8. Function 
structure of a standard 
machine.
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When the average degree of similarity conservation 
of the spaces was the highest, the search was 
completed in only two loops. After the first search 
(loop) was finished, the machine shown in Figures 
10 and 11 was created. The distance between this 
machine and the standard machine was 0.4 in the 
TFS.

On completion of the second search (loop), the 
machine shown in Figures 12 and 13 was created. 
This machine satisfied the required function.

This result indicates that forming an appropriate 
decomposed function space to search for the 
design solution in an efficient manner is replaced 
by the criterion of similarity conservation. In other 
words, it is possible to analyse the back and forth 
problem in the design process by converting it 
into a spatial problem. However, in this simulation 
a type of neighbourhood searching method, in 
which the notion of “similarity” is implied, is 
adopted. Therefore, this conversion is valid only 
when the design process involves the notion of 
neighbourhood searching process. However, the 

notion of neighbourhood or similarity is considered 
to be involved in nearly all the effective searching 
methods, such as genetic algorithms. Therefore, the 
method proposed in this paper may be general and 
applied to other fields.

CONCLUSION
It is concluded that the conservation of similarity 
between the space for the required function 
description and the space for the decomposed 
function description is the key to the design space 
forming process. This result indicates that forming 
an appropriate space in order to find the design 
solution in an efficient manner is replaced by the 
criterion of similarity conservation. In other words, 
the back and forth problem in the design process 
may be analysed by the spatial nature.

Figure 11. Function 
structure of the searched 
machine after the first 
search.

Figure 9. Relation between the average degree of similarity 
conservation of spaces and search efficiency.

Figure 10. The searched machine after the first search.
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