
A Solution to the Back and Forth Problem in the Design Space Forming
Process: A Method to Convert Time Issue to Space Issue
Toshiharu Taura,

Kobe University, Japan

 27

2008 | Volume II, Issue 1 | Pages 27–35

This paper discusses a method for converting time
issue into space issue in the design process. During
the design process, we often determine something
that can be evaluated only after the design process
has proceeded for a while. However, in some cases,
this kind of a problem (the back and forth problem) can
be converted into a spatial problem. In this paper, the
author approaches the design space forming process
in which the function is decomposed, as an example
of the back and forth problem, by extending our
previous mathematical discussion and using computer
simulation. The author shows that conserving the
similarity between the space for the required function
description and the space for the decomposed function
description is a key to solve the back and forth problem.
This result indicates that forming an appropriate space
for the decomposed functions for searching the design
solution in an efficient manner is replaced by the
criterion of similarity conservation. In other words, it
is possible to analyse the back and forth problem in the
design process by converting it into a spatial problem.

Keywords: back-and-forth problem, spatial problem, similarity,

simulation

INTRODUCTION
This paper discusses, particularly by focusing on
the back and forth problem, a method for converting
time issue into space issue in the design process.
During the design process, we often determine
something that can be evaluated only after the
design process has proceeded for a while.

For example, let us consider the process of
synthesizing two concepts. This process is regarded
as the simplest and most essential process in
formulating a new concept from the existing ones.
Here, the term ‘‘concept’’ is used to represent the
image regarding an object held in mind that existed
in the past, exists now, and will exist in the future.

From an empirical viewpoint, the invention of the
art knife the first snap-off blade cutter is a good
example (Figure 1). The inspiration for this incredible
idea came from the synthesis of two concepts
chocolate segments that can be broken off and
sharp edges of broken glass (Taura et al., 2005).

Although this invention is rather attractive, the
problem of focusing on the chocolate remains
unsolved. In other words, why is the chocolate
focused on? Generally, the chocolate is
unconcerned with the knife. It is extremely difficult
to select the concepts to be synthesized before
synthesizing them because the appropriateness of
selecting the concepts can be evaluated only after
they have been synthesized and the newly created
concept has been judged.

We can consider the second example of the
back and forth problem in the reasoning type of
synthesis. Many studies adopt the view that the
abductive pattern of reasoning shown below is
characteristic for the reasoning in the design
process, such as from function to form.

Premise p ⟶ q
Premise q
—
Conclusion p

Further, some discussions have clarified that
the pattern of reasoning in the design process is
modelled as shown below (Roozenburg, 2002).

Premise q
—
Conclusion p ⟶ q
Conclusion p

Artifact |2008 | Volume II, Issue 1 | Pages 25–35 28

In this case, there exists only one premise, and the
rule p⟶q becomes part of the conclusion. In other
words, at the time of reasoning (creating) a new
concept (design solution), the rule must be part of
the conclusion and must be inferred together with
the antecedent. This discussion also suggests
the existence of the back and forth problem. It is
extremely difficult to select or form the rules to
be used for reasoning the design solution before
inferring it because the appropriateness of selecting
or forming the rules can be evaluated only after they
have been applied and the newly created concept
has been judged.

The third example of the back and forth problem in
the design stage can be recognized in the process
of forming the design space (hereafter referred to
as design space forming process). A design process
is often defined as a solution-searching process in
a given design space. In this case, the manner in
which to select or form an appropriate design space
is an essential problem. In other words, selecting
or forming the appropriate design space that is to
be used for describing and searching the design
solution before the search process is extremely
difficult. This is because the appropriateness of
selecting or forming design space can be evaluated
only after the new design solution has been
searched for and judged.

As mentioned above, the back and forth problem
from the viewpoint of time is an essential and
unresolved problem in the design.

On the other hand, the back and forth problem is
directly or indirectly involved in other fields such as
manufacturing scheduling (for example, Giffler &

Thompson, 1960) or packing problem (for example,
Sweeney & Paternoster, 1992). Furthermore, the
back and forth problem is regarded as one of the
fundamental issues in the solution search problem
that have recently been aggressively approached,
such as the lazy evaluation problem (Launchbury,
1993).

AN APPROACH FOR THE BACK AND FORTH
PROBLEM
In some cases, the back and forth problem can be
converted into a spatial problem. For example, let us
consider the path of the light beam shown in Figure
2, wherein we attempt to discover the light beam
that passes from A to B by reflecting on the mirror.

If we attempt to predict the path of the beam based
on the knowledge that ‘‘a light beam travels along
the path which takes the shortest time’’, we are
unable to evaluate whether or not the path takes
the shortest time before the beam has travelled.
However, if we apply the knowledge that ‘‘the angle
of incidence is equal to the angle of reflection’’, then
it is possible to calculate the path of the light beam
before observing the travelling beam. In this case,
the back and forth problem from the viewpoint of
time is converted into a spatial problem.

Figure 1. Design
idea for an art
knife by com-
bining two con-
cepts – glass
and chocolate.

Figure 2. An example of converting time issue to space issue –
a light beam travelling path.

Artifact |2008 | Volume II, Issue 1 | Pages 25–35 29

Astudy of the General Design Theory (GDT)
(Yoshikawa, 1981) provides a hint in this direction.
The GDT defines design knowledge and the design
process using mathematical topological space.
It defines the design process as a mapping from
function space, where the design requirement is
described, to attribute space, where the design
solution is searched. Previous studies on GDT
have derived many theorems that can explain the
characteristics of design knowledge and the design
process. In this paper, the author approaches the
design space forming process as an example of the
back and forth problem, by extending our previous
study based on GDT.

In the early stage of the design process, the
required functions are generally decomposed into
some partial functions. Although this decomposition
process is not always necessary in finding design
solutions, it is well known that it is useful in the
design process. Not only has its importance been
pointed out in an empirical study (Pahl & Beitz,
1988) but also its rationale has been analysed in a
theoretical study (Taura, 1995).

Although the importance and necessity of the
function decomposition process is accepted in both
industry and academe, its methodology has not been
thoroughly clarified. Considering that the function
decomposition process is divided into (1) the
process of forming a function space for describing
the decomposed functions and (2) the process of
establishing a decomposed function structure for
searching the design solution, the former process,
in particular, has not been clarified. Although Suh
(Suh, 1990) pointed out that the required function
should be decomposed in an independent and brief
manner, the mechanism of forming the space for
the decomposed function has not been analysed. In
this study, the design space forming process for the
decomposed functions is analysed as an example
of the back and forth problem; this analysis is
particularly carried out by focusing on the problem
of determining the classes (defined later) that are
used to describe the decomposed functions.

METHOD FOR STUDYING THE BACK AND FORTH
PROBLEM IN DESIGN
In general, it is extremely difficult to study the
design process because this phenomenon occurs
in the human brain. We cannot observe this

phenomenon directly. Thus far, the protocol analysis
method has been used to observe the phenomenon.
However, its accuracy is limited. Modelling design
process is another method that is used to analyse
the characteristics of the design process. There
exist two methods for modelling the design process:
mathematical modelling and computer simulation.
Both these methods are effective with regard
to studying the design process. In the author’s
previous study, the function decomposition
process was determined in a precise manner, and
its nature was discussed mathematically using
GDT (Taura & Yoshikawa, 1992). In this paper, the
author approaches the back and forth problem by
extending our previous mathematical discussion and
using computer simulation.

METHOD
Basic idea
In our previous study, we proposed the following
hypothesis (Taura & Yoshikawa, 1992).

Hypothesis 1: ‘‘In function decomposition, the
elements that are near each other in the space for
the required functions are mapped onto elements
that are near each other in the space for the
decomposed functions in some cases.’’

This hypothesis implies that between two machines,
if the function structures that are described using
the decomposed functions are near each other,
they manifest similar functions as a whole, and the
inverse is also valid. This hypothesis is explained
using the example in Figure 3. First, let us define the
following terms.

Def. 1 Total function is defined as a function that is
manifested by an object (machine) as a whole.

Def. 2 Partial function is defined as a function that
is manifested by a component of an object
(machine).

Def. 3 Partial function structure of an object
(machine) is defined as a subset of the partial
functions manifested by the object (machine).

In this case, it is assumed that the total function
cannot be determined from the partial function.
The total function becomes clear by calculating the
attributes of all the components which compose the
object (machine).

Artifact |2008 | Volume II, Issue 1 | Pages 25–35 30

Let us consider the relation between a total
function and a partial function structure based on
the example provided in Figure 3. In this example,
let the arrows in this figure be regarded as the
behaviours and the function be described as the
categories of the behaviours ({Rotational, Straight-
Line} of {Input, Output}, Speed is {Amplified, Equal}
between Input and Output). First, let us examine
the total function of these machines. It is found
that both these machines manifest the same total
function, such as ‘‘Input is Rotational Behaviour’’,
‘‘Output is Rotational Behaviour’’ and ‘‘The Speed
of Behaviour is Amplified’’. Next, let us examine the
partial function structure of these two machines.
It is understood that MACHINE(1) comprises some
components a first gear, a rack and a second
gear. The first gear has functions such as ‘‘Input
is Rotational Behaviour’’, ‘‘Output is Straight-
Line Behaviour’’ and ‘‘The Speed of Behaviour is
Equal’’. The rack has functions such as ‘‘Input is
Straight-Line Behaviour’’, ‘‘Output is Straight-Line
Behaviour’’, and ‘‘The Speed of Behaviour is Equal’’.
The second gear has functions such as ‘‘Input is
Straight-Line Behaviour’’, ‘‘Output is Rotational
Behaviour’’, and ‘‘The Speed of Behaviour is
Amplified’’. In the same manner, the partial function
structure of MACHINE(2) is as follows. The first
lever has functions such as ‘‘Input is Rotational
Behaviour’’, ‘‘Output is Straight-Line Behaviour’’,
and ‘‘The Speed of Behaviour is Equal’’. The second
lever has functions such as ‘‘Input is Straight-Line
Behaviour’’, ‘‘Output is Straight-Line Behaviour’’,
and ‘‘The Speed of Behaviour is Equal’’. The third
lever has functions such as ‘‘Input is Straight-Line
Behaviour’’, ‘‘Output is Rotational Behaviour’’,
and ‘‘The Speed of Behaviour is Amplified’’. In
this case, one will notice that both the partial
function structures are the same, although they
comprise different mechanical components. As a
result, similarity in the partial function structures

is obtained between two machines that manifest
the same total function, but comprise different
mechanical components.

In our previous study, we simulated the function
decomposition process and showed that design
solutions can be found in an efficient manner by
adopting this hypothesis. However, this simulation
was operated in the spaces defined in an ad hoc
manner. In particular, the classes that are used
to describe the partial functions (viewpoints for
recognizing the partial functions) are usually defined
in an ad hoc manner. In the example of Figure 3, the
classes for the partial functions are determined in
the same manner as those for the total functions.
Therefore, the following question is raised: ‘‘How is
the most appropriate space for the partial function
formed?’’

In the design process, the process of forming the
space for the partial functions precedes the process
of establishing a partial function structure for
searching the design solution. Although the space
for the total function can be formed on the basis of
the fact that the design specification is described,
the space for the partial function cannot be fixed
because we cannot find a rational criterion to
evaluate the space.

One can assume that the space for the partial
function is formed in order for the design solution
to be found in an efficient manner. However, the
following question is raised: ‘‘How can the designer
find the space for searching the design solution
efficiently, before beginning to search?’’

In order to discuss this problem in a scientific
manner, the author extends our previous discussion.
The similarity conservation between the space
for the total function and the space for the partial
function structures was the key to form the function
space. Let us consider this idea by using the
examples in Figure 3 again. If we focus on the partial
functions from another viewpoint, for example,
colour, we cannot find any similarity between these
two machines, and it may be easily assumed that
this viewpoint is not useful for finding a design
solution. This discussion suggests that the similarity
conservation between two spaces is strongly
related to the design space forming process. In
other words, Hypothesis 1 is valid only when the

Figure 3. An example of function similarity between machines.

Artifact |2008 | Volume II, Issue 1 | Pages 25–35 31

design solution can be found in an efficient manner.
Therefore, we proposed the following hypothesis
(Taura & Tobita, 2003).

Hypothesis 2: ‘‘In order to find a design solution
using the space for the partial functions efficiently,
the space for the partial function should be formed
so that the elements that are near each other in
the space for the total functions are mapped onto
elements that are near each other in the space for
the partial functions.’’

Mapping criterion
In this study, the author defines the criterion for
evaluating the degree of similarity conservation
between the space for the total functions and
the space for the partial functions (Figure 4).
By applying this criterion, we can find a more
appropriate space for the partial functions.

Methods of searching
A computer system is implemented and the
above method is simulated in order to investigate
the manner in which the degree of similarity
conservation between the Total Function Space
(TFS) and the Partial Function Space (PFS) is
related to the efficiency of searching for a required
machine. In this simulation, we use a method to
search for a required machine, which is referred to
as a ‘‘Gradually Approaching Search’’ in this study.

Definition of the function space.
In this study, the function spaces are defined as
follows in set theory.

Def. 4 The TFS is defined as a space whose
elements are objects (machines), and its
classes (subsets of elements) are the objects’
total functions.

Def. 5 The PFS is defined as a space whose
elements are objects (machines), and its
classes (subsets of elements) are generated
by classifying the objects from the viewpoints
of their components’ functions.

Def. 6 The distance between two objects (machines)
that expresses the distance between two
elements in one space is defined as follows.
Consider two elements in the total function
space s1 and s2 that express the total
function of the two objects (machines). They
share A number of classes, and they do not
share B number of classes. The following
formula can be obtained as the distance
between the two objects (machines).

 B d=
 A+B (1)

In the PFS, the order of the classes (partial
function) is also considered.

Def. 7 The degree of similarity conservation between
the TFS and PFS is defined as follows.
When the distances between the standard
element and all other elements in the PFS are
dpn(n =1,2,3,...,N); and those in the TFS after
mapping are dtn(n =1,2,3,...,N); the degree of
similarity conservation between the TFS and
PFS (S) is calculated by using the following
formula. The maximum of S is 1.0, and the
minimum of S is 0.0.

Figure 4. Difference in
the degree of similarity
conservation between two
spaces

Artifact |2008 | Volume II, Issue 1 | Pages 25–35 32

 N
 ∑ |dtn dpn|

 S= 1.0− —————— (2)

n =1

 N

The Gradually Approaching Search.
In the Gradually Approaching Search, initially, the
neighbourhood of the standard element is selected
in the PFS. Following this, the components that
correspond to the partial function are searched,
and the total function is determined. Next, the
searched elements in the PFS are mapped onto the
TFS. One machine closest to the required machine
is selected. If it satisfies the required total function
completely, the search ends. If it does not, the
selected machine becomes a new standard element
and the loop is repeated until the required machine
is found (Figure 5). This algorithm is shown in Figure
6. This searching models the situation in which a
designer finds a required function after changing
the composition of the partial function in a gradual
manner.

SIMULATION USING THE GRADUALLY
APPROACHING SEARCH
We conducted computer simulation as follows.

Setting up this simulation
A required machine is searched using randomly
generated PFSs in order to observe the relationship
between the similarity conservation of spaces

and search efficiency. In this computer system,
the data pertaining to 30 components are stored,
and one known machine and the total function of a
required machine are inputted; then, a combination
of components that fills the required total function is
outputted. The setup of this simulation is as follows.

1. We prepare 30 components, the mechanisms of
which are simple (gear, belt mechanism, cam, link
mechanism, spring and so on).

2. All the machines comprise three components. The
total number of component combinations is 718.

3. Each component has five attributes. Two
attributes are behavioural ones: ‘‘Input
Behaviour’’ and ‘‘Output Behaviour’’. The other
three attributes are numerical ones: a change of
speed between Input and Output, the direction
of ‘‘Output’’ from ‘‘Input’’ on the X-axis, and the
weight of the component. These three attributes
have numerical values (−9⁓9).

4. Six types (value of attribute) of behaviour
are prepared for Input Behaviour and
Output Behaviour: ‘‘Horizontal Straight-Line
Movement’’, ‘‘Vertical Straight-Line Movement’’,
‘‘Horizontal Reciprocating Movement’’, ‘‘Vertical
Reciprocating Movement’’, ‘‘Rocking Movement’’,
and ‘‘Rotational Movement’’.

5. The three numerical attributes of a machine
are calculated by summing the values of the
attributes of the three components composing the
machine, while the values of the two behavioural
attributes of the machine are determined as
the value of the attribute of Output of the third

Figure 5. Mechanism of the ‘Gradually Approaching Search’.

Figure 6. Algorithm of the ‘Gradually Approaching Search’.

Artifact |2008 | Volume II, Issue 1 | Pages 25–35 33

component. Each function is represented using
a function name and its value, which is assigned
by dividing the numerical attributes into three
groups or by describing the attributes of Output of
the third component. For example, if a machine’s
numeral value for weight is under 7, the machine
has the function of its whole weight being light.
If the value is under 7 and beyond 7, the machine
has the function of its whole weight being
medium. If the value is beyond 7, the machine has
the function of its whole weight being heavy.

6. One known machine is prepared in advance. It is
the standard machine in the simulation. Its Input
Behaviour is Horizontal Straight-Line Movement,
and its Output Behaviour is Vertical Reciprocating
Movement. The change of speed between Input
and Output is ‘‘Equal’’ throughout the machine;
the direction of Output from Input on the X-axis
is ‘‘Almost Zero’’ and the machine’s weight is
‘‘Medium’’. This machine comprises component
numbers 12, 25 and 29 (Figures 7 and 8).

7. With regard to the required function, its ‘‘Input
Behaviour’’ is ‘‘Horizontal Reciprocating
Movement’’, and its ‘‘Output Behaviour’’ is

‘‘Vertical Straight-Line Movement’’; the change
of speed is ‘‘Decrease’’ throughout the machine;
the direction of Output from Input on the X-axis is
‘‘Plus’’; and the weight of the machine is ‘‘Heavy’’.
The distance between this machine and the
standard machine is 0.7 in the TFS.

8. The simulation is completed when the required
machine is found. The search efficiency is defined
as the reciprocal number of times that the loop is
repeated before finding the required machine.

9. In the PFS, the functions of 30 components are
classified into six classes which are determined
as partial function.

10. The PFS is generated at random and for each
PFS, 50 simulations are tried and their average is
shown.

11. During the search, the degree of similarity
conservation between the TFS and PFS can be
changed since the standard machine changes.
Therefore, the average degree of similarity
conservation between the TFS and the PFS
throughout the entire search is shown.

12. The maximum number of searching loops is 300. If
a required machine is not found in 300 loops, then
it is considered that the required machine cannot
be found.

Result of the simulation and discussion
The relationship between the average degrees
of similarity conservation of spaces and search
efficiency is shown in Figure 9,which shows that
the conservation of the similarity between the PFS
and TFS throughout the search is related to the
improvement in the search efficiency.

Figure 7. Struc-
ture of a standard
machine.

Figure 8. Function
structure of a standard
machine.

Artifact |2008 | Volume II, Issue 1 | Pages 25–35 34

When the average degree of similarity conservation
of the spaces was the highest, the search was
completed in only two loops. After the first search
(loop) was finished, the machine shown in Figures
10 and 11 was created. The distance between this
machine and the standard machine was 0.4 in the
TFS.

On completion of the second search (loop), the
machine shown in Figures 12 and 13 was created.
This machine satisfied the required function.

This result indicates that forming an appropriate
decomposed function space to search for the
design solution in an efficient manner is replaced
by the criterion of similarity conservation. In other
words, it is possible to analyse the back and forth
problem in the design process by converting it
into a spatial problem. However, in this simulation
a type of neighbourhood searching method, in
which the notion of “similarity” is implied, is
adopted. Therefore, this conversion is valid only
when the design process involves the notion of
neighbourhood searching process. However, the

notion of neighbourhood or similarity is considered
to be involved in nearly all the effective searching
methods, such as genetic algorithms. Therefore, the
method proposed in this paper may be general and
applied to other fields.

CONCLUSION
It is concluded that the conservation of similarity
between the space for the required function
description and the space for the decomposed
function description is the key to the design space
forming process. This result indicates that forming
an appropriate space in order to find the design
solution in an efficient manner is replaced by the
criterion of similarity conservation. In other words,
the back and forth problem in the design process
may be analysed by the spatial nature.

Figure 11. Function
structure of the searched
machine after the first
search.

Figure 9. Relation between the average degree of similarity
conservation of spaces and search efficiency.

Figure 10. The searched machine after the first search.

Artifact |2008 | Volume II, Issue 1 | Pages 25–35 35

ACKNOWLEDGEMENTS
The computer simulation in this paper was
performed by Shusuke Tobita. The author is grateful
for his work.

REFERENCES
Giffler, B., & Thompson, G. J. (1960). Algorithms for solving

production-scheduling problems. Operations Research, 8 (4),
487503.

Launchbury, J. (1993). A Natural Semantics for Lazy Evaluation.
In Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (pp.
144154). Charleston, SC: ACM Press.

Pahl, G., & Beitz, W. (1988). Engineering design: A systematic
approach. New York: Springer Verlag.

Roozenburg, F. M. N. (2002). Defining synthesis: On the sense
and the logic of design synthesis. In A. Chakrabarti (Ed.),
Engineering Design Synthesis (pp. 318). New York etc.:
Springer Verlag.

Sweeney, P. E., & Paternoster, E. R. (1992). Cutting and packing
problems: A categorized, application-oriented research
bibliography. Journal of the Operational Research Society,
43 (7), 691706.

Suh, N. (1990). The Principle of Design. Oxford and New York:
Oxford University Press.

Taura, T. (1995) Design science for functional design
process modeling. In Proceedings of the 10th International
Conference on Engineering Design ICED95 (pp. 456464).
Prague: WDK.

Taura T., Nagai, Y., & Tanaka, S. (2005). Design space blending.
In Proceedings of ICED 2005: 14th International Conference
on Engineering, CD-ROM. Melbourne: The Design Society.

Taura, T., & Tobita S. (2003). Similarity convervation-A key to
forming the function space. In A. Folkeson, K. Gralen, M.
Norell and U. Sellgren (Eds.), Proceedings of ICED 2003:
14th International Conference on Engineering (CD-ROM).
Stockholm: The Design Society.

Taura, T. & Yoshikawa, H. (1992). A metric space for intelligent
CAD. In Intelligent Computer Aided Design. Proceedings of
the IFIP WG5.2 Working Conference on Int CAD 91 (pp. 133
157). Amsterdam: North Holland.

Yoshikawa, H. (1981). General design theory and a CAD
system. In T. Sata & E. Warman (eds.), ManMachine
Communication in CAD/CAM, Proceedings of the IFIP
WG5.2-5.3 Working Conference 1980 (Tokyo) (pp. 3557).
Amsterdam: North-Holland.

Figure 13. Function
structure of the searched
machine after the second
search.

Figure 12. The searched machine after the second search.

