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ABSTRACT
The purpose of this study is to evaluate coal and coal byproducts (coal waste, coal ash, and 
acid mine drainage) in Indiana as potential sources of rare earth elements (REE). On a whole-
rock basis, most Indiana coal samples have REE content below 100 ppm, and only some 
samples of the Brazil and Staunton Formations (Lower and Upper Block and Viking B coals) 
reach 100 ppm. Because REE concentrations vary between locations and within individual 
coal beds, and the correlations of coals within the Brazil and Staunton Formations are often 
uncertain, a better understanding of the stratigraphy of these formations is needed to identify 
the most promising REE horizons. 
Owing to a long history of coal mining, Indiana has numerous coal preparation plants and 
associated coarse-and fine-grained coal refuse (known, respectively, as gobs and slurry 
ponds). This paper reviews the available data on locations and volumes of these deposits. The 
total extent of slurry pond deposits was estimated at 2,765 acres, and the total volume esti-
mates ranged from 94,000,000 to 136,000,000 cubic yards. No estimates are available for gob 
deposits in Indiana. To our knowledge, no REE data are available for coal preparation plant 
waste in Indiana, except for minimal data from coal slurry in Warrick County. Water streams 
from abandoned coal mines and coal processing (acid mine drainage, AMD) could also be a 
source of REE or other critical minerals; we review available data from AMD sites. 
Indiana, having many coal-fired power plants, has accumulated a large quantity of coal ash 
during its mining history. Our estimates indicate that coal ash deposits occupy ~2,184 acres, 
storing ~52,566,153 m3 of ash. Volume estimates for individual coal ash sites come from 
various sources and present our best estimates at this time. To our knowledge, no REE data 
are available on coal ash in Indiana. Such data would be of great value because coal ash 
deposits could be an important resource for REE, other critical minerals, or other high-value 
carbon products.
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INTRODUCTION
Recent increasing demand for rare earth elements 
(REE) due to their use in many modern technologies 
has intensified the search for new sources. Traditional 
sources of REE are alkaline igneous or carbonate-rich 
igneous rocks that crystallized at high temperatures 
deep within the earth (Dostal, 2017). As these conven-
tional ores become progressively depleted and recovery 
more difficult, the possibility of recovering REE from 
sedimentary rocks has gained both technical and 
economic appeal (Cullers and others, 1979; Condie, 
1991; Moldoveanu and Papangelakis, 2016; Emsbo and 
others, 2015; Laurino and others, 2019).
Extensive research has been conducted worldwide on 
REE in coal (Goldschmidt and Peters, 1933; Seredin 
and Dai, 2012; Hower and others, 2016) and coal 
combustion byproducts (Hower and others, 2016; 
Kolker and others, 2017; Dai and Finkelman, 2018). 
Coal ash, in particular, has received much attention; 

it was even suggested that REE-rich coal ash could 
match the economic viability of conventional types of 
ores such as carbonatites, alkaline granites, or weath-
ering crusts (Seredin and Dai, 2012; Seredin and others, 
2013). In addition to the REE concentrations, econom-
ically viable REE recovery is another critical issue for 
coal and coal byproducts. Over the past decade, a lot 
of effort has been put into recovering REE from coal 
ash and several approaches have been researched and 
developed. These approaches include membrane-based 
REE separation (Hendren and others, 2017), extraction 
by ion exchange (Rozelle and others, 2016), selective 
chelation for capture of REE from solution on solid 
substrates (Karamalidis and others, 2017), or bacterial 
separation (Bonificio and Clarke, 2016). Several small-
scale bench projects sponsored by the United States 
Department of Energy (DOE) validated that REE in 
coal and coal byproducts could be upgraded to the 
level of purity normally achieved from conventional 
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ores, initially exceeding the DOE requirement of  
2 % concentration, and then proceeding to reach as high 
as 99 wt. % purity (U.S. DOE, 2022). Those projects 
involved a combination of standard and novel technol-
ogies and integrated physical and chemical separation 
processes. Subsequent small-scale pilot projects also 
achieved high-purity REE concentrates, demonstrating 
the technical feasibility of the process. However, as 
of 2022, a large-scale successful and economically 
feasible technique to extract REE from coal ash is not 
yet available.
The purpose of this study was to evaluate coal and 
coal byproducts (coal waste, coal ash, and acid mine 
drainage) in Indiana as potential sources of REE. In this 
paper, under REE designation, we include 15 elements 
of the lanthanide series plus yttrium (Fig. 1). We review 
available data, summarize the availability of coal and 
coal byproducts, and discuss implications with regard 
to REE potential. 

REE CONCENTRATIONS IN INDIANA COALS 
Three publicly available datasets contain REE data  
on Indiana coals. The samples for these datasets were 

collected at different times, were analyzed using 
different techniques, and were obtained on different 
bases (whole-rock or ash basis). These datasets are 
summarized below, and in this paper, they are referred 
to as: a) whole-rock basis NCRDS dataset; b) ash basis 
EC dataset; and c) whole rock-basis Earth MRI dataset.
The whole-rock basis NCRDS dataset is part of the 
National Coal Resource Dataset (NCRDS) (Oman and 
others, 1992). The samples were collected by Indiana 
Geological Survey researchers before 1990. REE anal-
yses were carried out by neutron activation and optical 
emission spectrographic techniques at the U.S. Geolog-
ical Survey (USGS) and the data are presented on a 
whole-rock basis. These data also can be found in the 
Indiana coal quality database (Drobniak and others, 
2018). Full-channel coal samples for which the entire 
suite of REE is available have a range of REE from 25.4 
ppm in the Mariah Hill Coal of the Mansfield Forma-
tion to 101.2 ppm in the Lower Block Coal Member of 
the Brazil Formation (Table 1).
In the whole-rock basis NCRDS dataset, the largest 
number of full-channel analyses is available on the 
Springfield Coal Member of the Petersburg Formation 

Table 1. Summary of REE data on Indiana coals (full-channel raw samples, whole-rock basis) for the whole-rock basis 
NCRDS dataset. Only samples that have the entire suite of REE data are included in this table. SD – standard deviation. 
Light REE (La+Ce+Pr+Nd+Pm+Sm+Eu), heavy REE (Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu+Y).

Formation Coal bed N
Light REE [ppm] Heavy REE [ppm] Average 

total REE 
[ppm]Minimum Maximum Average SD Minimum Maximum Average SD

Dugger

Danville 13 20.8 65.7 37.5 14.2 7.0 16.3 11.5 2.8 48.9

Hymera 11 15.1 87.1 40.7 25.3 4.0 24.7 11.8 6.3 52.5

Bucktown 3 24.9 26.9 25.9 1.0 11.4 14.6 13.3 1.7 39.2

Petersburg
Springfield 31 18.4 77.5 32.8 15.6 6.2 22.5 10.4 3.1 43.3

Houchin 
Creek

3 15.7 19.1 17.7 1.8 8.1 15.9 11.1 4.2 28.7

Linton

Survant 6 29.9 65.5 54.7 13.3 10.7 16.0 13.0 2.0 67.7

Colchester 2 18.5 19.1 18.8 0.4 7.1 7.4 7.3 0.2 26.1

Seelyville 5 11.5 87.6 31.7 29.2 6.1 22.5 9.5 6.5 41.1

Brazil

Buffaloville 6 12.5 42.5 30.5 13.9 4.9 15.4 10.5 4.4 40.9

Upper Block 10 31.3 106.9 55.8 21.3 5.1 20.3 11.5 5.1 67.3

Lower Block 2 74.6 85.9 80.2 7.9 16.8 25.3 21.0 6.1 101.2

Unnamed 
Brazil

13 13.1 144.1 53.2 42.8 5.1 24.2 13.0 5.6 66.2

Mansfield

Mariah Hill 3 10.7 30.4 17.5 11.1 7.5 8.6 7.9 0.6 25.4

Blue Creek 2 27.5 30.1 28.8 1.8 5.4 5.7 5.5 0.2 34.3

Unnamed 
Mansfield

6 17.5 42.9 29.6 11.0 3.7 10.9 7.3 2.7 36.9
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(31), followed by undifferentiated Brazil Formation 
coals (13), and the Danville and Hymera Coal Members 
(13 and 11, respectively) of the Dugger Formation. This 
brief summary of REE data on full-channel samples 
and on a whole-rock basis for Indiana coal (Table 
1) indicates that REE concentrations are similar to 
those found in world coals (average 68.5 ppm; Ketris 
and Yudovich, 2009) and in U.S. coals (62.1 ppm; 
Finkelman, 1993). These data also show that some coals 
(e.g., coals of the Brazil Formation) consistently have 
higher REE concentrations compared to other coals. We 
note that in this dataset, in addition to the coal samples 
that have the entire REE suite, there are also numerous 
coal samples for which complete sets of REE data are 

Extent of the Pennsylvanian  system

REY promising samples

REY unpromising samples

0

0

10 20 mi

10 20 km

ILLINOIS

INDIANA

KENTUCKY

KNOX

VIGO

PIKE

CLAY

PARKE

VE
RM

IL
LI
O
N

GREENE

GIBSON

OWEN

POSEY

BOONE

PUTNAM

DUBOIS

PERRY

DAVIESS

ORANGE

SULLIVAN

CLINTON

MONROE

MORGAN

MARTIN

SPENCER

WARRICK

VA
ND

ER
BU

RG
H

WARREN

LAWRENCE

CARROLL

TIPPECANOE

FOUNTAIN

HENDRICKS

MONTGOMERY

CRAWFORD
Figure 2. Map showing the classification 
of coal samples from the Indiana Coal 
Quality Database (whole-rock NCRDS 
dataset) into promising and unpromising 
with regard to REE potential expressed 
by outlook coefficient. Only samples 
that had the full suite of REE available 
were considered. After Chatterjee and 
others (2022).

unavailable, with the number of analyses ranging from 
234 for yttrium (Y) to 120 for samarium (Sm).
The same set of whole-rock REE data was used by 
Chatterjee and others (2022) to identify REE potential 
in Indiana coal using a machine learning and augmen-
tation approach. In that study, the REE potential was 
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expressed as the outlook coefficient — the ratio of crit-
ical (Nd, Eu, Tb, Dy, Er, and Y) to uncritical (La, Pr, 
Sm, Gd) and excessive (Ce, Ho, Tm, Yb, Lu) elements, 
a parameter based on market trends (Seredin, 2010; 
Seredin and Dai, 2012). Out of several coal parameters 
considered as having potential for REE screening, the 
analysis revealed that ash yield and aluminum oxide 
(Al2O3) content were the two most important ones. The 
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Figure 3. Map showing the 
location of coal mines and 
boreholes in southwestern 
Indiana where coal samples 
were collected for REE 
analysis. Red dots – the 
ash basis CE dataset; green 
triangles – the whole-rock 
basis  Earth MRI dataset. 

model developed in this study can successfully and with 
high confidence classify coal samples into promising 
and unpromising with regard to REE potential (Fig. 2). 
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Table 2. Light (LREE) and heavy (HREE +Y) rare earth element content in coal samples (bench and full-channel, ash 
basis) from Antioch Mine, Shamrock Mine, and grab samples from various coals in the Bear Run, Oaktown, and Francisco 
mines in Indiana. These data are part of the ash basis CE dataset.

MINE Sample LREE  
[ppm, ash basis]

HREE 
[ppm, ash basis]

Total REE 
[ppm, ash basis]

AN
TI

O
CH

 M
IN

E

Unnamed Staunton 1 (upper bench 0-25 cm) 111.2 74.3 185.5

Unnamed Staunton 1 (lower bench 25-47 cm) 99.5 117.1 216.7

Unnamed Staunton 1 (full channel 0-47 cm) 105.7 94.4 200.1

Unnamed Staunton 2 (upper bench 0-33 cm) 1041.6 426.8 1468.3

Unnamed Staunton 2 (lower bench 33-59 cm) 927.1 165.9 1093.0

Unnamed Staunton 2 (full channel 0-59 cm) 991.1 311.8 1302.9

Buffaloville (upper bench 0-8 cm) 192.1 62.5 254.6

Buffaloville (lower bench 8-16 cm) 99.4 49.3 148.7

Buffaloville (full channel 0-16 cm) 145.7 55.9 201.7

Lower Block (upper bench 0-15 cm) 168.5 150.3 318.8

Lower Block (middle bench 15-23 cm) 191.5 85.3 276.8

Lower Block (lower bench (23-35 cm) 308.2 85.8 394.0

Lower Block (full channel 0-35 cm) 221.6 113.3 335.0

SH
AM

RO
CK

 M
IN

E

Unnamed Staunton (upper bench 0-14 cm) 1199.8 107.8 1307.6

Unnamed Staunton (middle bench 14-23 cm) 177.8 280.1 457.9

Unnamed Staunton (bottom bench 27-42 cm) 1207.6 352.0 1559.6

Unnamed Staunton (full channel 0-42 cm) 960.8 245.0 1205.8

Buffaloville (upper bench 0-17 cm) 111.1 66.8 177.9

Buffaloville (lower bench 17-43 cm) 184.9 51.4 236.3

Buffaloville (full channel 0-43 cm) 155.7 57.5 213.2

Upper Block (upper bench 0-8 cm) 173.3 170.7 344.0

Upper Block (middle top bench 8-12 cm) 147.6 94.4 242.0

Upper Block (middle lower bench 12-15 cm) 706.1 117.6 823.7

Upper Block (bottom bench 15-27 cm) 344.4 119.4 463.8

Upper Block (full channel 0-27 cm) 304.7 130.7 435.4

Lower Block (upper bench 0-20 cm) 261.8 124.2 386.0

Lower Block (middle bench 20-44 cm) 520.6 138.4 658.9

Lower Block (lower bench 44-66 cm) 856.4 147.2 1003.6

Lower Block (full channel 0-66 cm) 538.3 132.8 671.1

VA
RI

O
US

 M
IN

ES
  

G
RA

B 
SA

M
PL

ES

Danville (Bear Run Mine grab) 214.2 59.1 273.3

Washed Danville (Bear Run Mine grab) 309.8 76.6 386.5

Hymera (Bear Run Mine grab) 196.2 54.1 250.3

Bucktown (Bear Run Mine grab) 184.0 82.7 266.8

Springfield (Bear Run Mine grab) 349.4 110.6 460.0

Three coals blend (Bear Run Mine grab) 387.3 82.3 469.6

Springfield 1 (Oaktown Mine grab) 240.4 73.3 313.6

Washed Springfield 1 (Oaktown Mine grab) 206.1 72.3 278.3

Springfield 2 (Oaktown Mine grab) 121.2 42.7 163.9

Washed Springfield 2 (Oaktown Mine grab) 438.6 130.0 568.5

Washed Springfield (Francisco Mine grab) 381.5 94.3 475.8
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The ash basis CE dataset includes 69 coal samples 
from several boreholes and coal mines in Indiana 
(Fig. 3; Mastalerz and others, 2020). These coal 
samples were collected in 2017-2019 and the analyses 
were carried out at the Kentucky Geological Survey 
by inductively coupled plasma optical emission spec-
troscopy (ICP-OES) after multi-acid digestion of 
the coal ash. In this dataset, REE concentrations 
are presented on the ash basis. Because not all coal 
samples in this dataset have ash yield determined, 
it was not possible to recalculate these data into the 
whole-rock basis and compare to other datasets.
These analyses on an ash basis provide important 
information about the variation of REE between 
individual coalbeds as well as within individual coal 
beds. Selected data on REE concentrations for this 
dataset are presented in Table 2. Overall, the concen-
trations of REE on an ash basis in the coals vary from 
less than 200 ppm to more than 3,000 ppm (Mastalerz 
and others, 2020). The Lower Block and the Upper 
Block Coal Members of the Brazil Formation and 
some coal seams of the Staunton Formation contain 
the highest REE concentrations and, considering 
market trends, have the best commercial REE poten-
tial. Experimental data related to REE extraction 
from coal combustion waste of Russian low-rank 
coals suggest that combined REE oxide content 
above 1,000 ppm (on ash basis) could be considered 
the threshold for beneficial recovery of the metals 
(Seredin, 2004). Seredin and Dai (2012) suggested 
that this cut-off value could be lowered to 800 to 900 
ppm, especially if the coal seam having high REE 
content is thick. Considering this threshold, several 
of the Indiana coal beds have such potential, specif-
ically, the Staunton Formation coals in the Antioch 
and Shamrock mines. Some Brazil Formation coals 
also would qualify (Table 2). Therefore, the ash of 
these coals could be viable sources of REE. Concen-
trations of REE in the most economically important 
coals, such as the Springfield Coal Member and the 
Danville Coal Member, are lower and fall below the 
800 to 900 ppm threshold (Table 2). Comparison 
of individual REE concentrations in the unnamed 
Staunton Formation coal to other known sources of 
REE is shown in Fig. 4.
The whole-rock NCRDS dataset and the ash basis CE 
dataset were generated using either neutron activa-
tion and optical emission spectrographic analysis or 
inductively coupled plasma optical emission spectros-
copy (ICP-OES). These techniques yield reliable REE 
concentrations on elements that occur in relatively 
large quantities. However, for elements that have 
low concentrations, such as terbium (Tb), holmium 

(Ho), thulium (Tm), and lutetium (Lu) in Pennsylva-
nian coals (Mastalerz and others, 2020), these tech-
niques may result in erroneous data. Therefore, for 
REE analysis, it is important to use techniques that 
have lower detection limits, for example, inductively 
coupled plasma-optical emission spectrometry – mass 
spectroscopy (ICP-OES-MS). This technique has been 
used recently to analyze 29 coal samples from 11 core 
locations in Indiana, and these data (referred here as 
the whole-rock Earth MRI dataset) are presented on a 
whole-rock basis (Table 3).
For this dataset, samples were collected in 2021 from 
archived cores, and analyses were conducted as part 
of USGS Earth MRI Program. Most coal samples 
have REE content less than 100 ppm, and only 
some samples of the Brazil and Staunton Formation 
(Lower and Upper Block, and Viking B Coal) reach 
100 ppm (Table 3). There is one anomalous sample of 
the Seelyville Coal of the Linton Formation in loca-
tion 14Q13-3 with REE as high as 608.3 ppm. 
All the above REE data on Indiana coals show that the 
Indiana coals represent low-grade source material, and 
that the Staunton Formation and Brazil Formation coals 
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Table 3. Light (LREE) and heavy (HREE +Y) rare earth element content in coal samples from the whole-rock basis Earth 
MRI dataset. 

Well and sample Coal member
LREE  

[ppm, whole-rock 
basis]

HREE 
[ppm, whole-

rock basis]

Total REE 
[ppm, whole-

rock basis]

SDH-4-4 Danville Coal 10.6 4.2 14.8

SDH-259-4 Danville Coal 19.1 6.2 25.3

SDH-366-1 Danville Coal 14.2 8.1 22.2

SDH-347-2 Danville Coal 45.0 10.7 55.7

SDH-259-9 Hymera Coal 11.3 5.6 16.9

SDH-300-3 Hymera Coal 40.4 7.9 48.3

SDH-347-6 Hymera Coal 22.4 6.8 29.2

SDH-366-5 Hymera Coal 54.7 19.7 74.5

SDH-259-11 Herrin Coal 6.5 6.7 13.2

SDH-347-11 Springfield Coal 39.0 10.5 49.5

SDH-366-7 Springfield Coal 42.3 11.9 54.2

SDH-259a-2 Springfield Coal 32.7 12.1 44.9

SDH-300-8 Springfield Coal 12.3 3.7 16.0

SDH-259a-5 Houchin Creek Coal 14.9 8.7 23.6

SDH-366-11 Houchin Creek Coal 25.7 11.5 37.1

SDH-379-3 Houchin Creek Coal 9.5 8.1 17.6

SDH-300-13 Houchin Creek Coal 7.0 8.8 15.8

SDH-379-9 Colchester Coal 9.0 7.9 17.0

14Q13-2 Colchester Coal 8.5 12.2 20.7

SDH-259a-12 Upper Seelyville Coal 15.7 10.1 25.8

14Q13-3 Upper Seelyville Coal 238.8 369.6 608.4

14Q13-6 Lower Seelyville Coal 5.8 10.3 16.0

SDH-259a-19 Viking A Coal 25.7 6.7 32.4

14Q13-10 Viking A Coal 18.5 5.6 24.1

14Q13-13 Viking B Coal 89.7 11.7 101.5

SDH-217-2 Minshall Coal 53.8 21.7 75.6

14Q13-16 Upper Block Coal 16.1 13.5 29.6

SDH-217-6 Upper Block Coal 106.0 13.7 119.7

SDH-217-10 Lower Block Coal 94.1 12.8 106.9

are generally richer in REE than the coals of the Linton, 
Petersburg, or Dugger Formations (Tables 1, 2, 3). Data 
from the ash basis CE dataset point to the Staunton 
and Brazil Formation coals and their byproducts as the 
highest potential source of REE. Because REE concen-
trations vary both between locations and within indi-
vidual coal beds, and the correlations of coals within 
the Brazil and Staunton Formations are often uncertain 

(Mastalerz and others, 2018, 2019), a better under-
standing of the stratigraphy of these formations is 
needed to identify and target the most promising REE 
horizons (Mastalerz and others, 2020). Moreover, we 
note that to better understand REE potential of Indiana 
coals, more high-quality data collected using modern, 
sensitive techniques are needed on REE concentration 
and REE associations. 
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COAL PREPARATION PLANT WASTE 
Indiana has a long history of coal mining (~150 years) 
and is still a major coal producer (17,871,402 tons in 
2021). Due to the high sulfur contents of most Indiana 
coals (e.g., Mastalerz and others, 2009), the vast majority 
of the coal has been washed in coal preparation facili-
ties to meet coal quality specifications. Consequently, 
in addition to the clean coal product, these prepara-
tion plants generate coal waste—rejects from the coal 
cleaning process. Rejects can be broadly classified 
as coarse-grained refuse (also called “gob”) and fine-
grained refuse (also known as coal tailings or slurry; 
see Fig. 5 as an example). This coal waste material is 
typically deposited close to the coal preparation facil-
ities. Because coal waste often contains large amounts 
of pyrite exposed to both water and atmospheric 
oxygen, the soil becomes acidic, and unreclaimed waste 
deposits typically remain without vegetation for many 
years until pyrite becomes completely oxidized. After 
passage of the Surface Mining Control and Reclama-
tion Act (SMCRA) in 1977, coal mine operators were 
required to reclaim their coal waste after mining termi-
nated, and the Abandoned Mine Lands (AML) program 
was instituted to reclaim abandoned coal waste deposits 
(Harper and others, 2009). Most of the deposits have 
since been revegetated after being covered by a cap of 
soil, synthetic soil, or spoil, or after the application of 
large quantities of agricultural limestone.

Indiana has numerous coal preparation plants and asso-
ciated coarse- and fine-grained coal refuse (Fig. 6), 
and several studies attempted to map Indiana’s coal 
waste deposits. In the early 1970s, color-infrared Earth 
Resources Technology Satellite imagery was used to 
map these deposits, and their area was estimated at 
1,631 acres (Wobber and others, 1974 and 1975). Weis-
miller and Mroczynski (1978) provided maps of both 
slurry ponds as well as gobs. Eggert (1979) generated 
a map showing the locations of 44 slurry deposits and 
active preparation plants. More recently, Harper and 
others (2009) conducted a comprehensive study of coal 
slurry deposits. In that study, maps, reports, and histor-
ical aerial photographs were georeferenced, slurry 
deposits were identified, and their extent and volumes 
were estimated. Shapefiles with accompanying prepa-
ration plant information are available from the Indiana 
Geological and Water Survey (Figs. 7-10). The intent of 
these maps is to provide a quick reference as to where 
in Indiana the most slurry pond sediments are avail-
able. The total extent of the slurry pond deposits iden-
tified in Harper and others (2009) was estimated at 
2,765 acres, and the total volume estimate ranged from 
94,000,000 to 136,000,000 cubic yards. Taking into 
account mineability considerations, they estimated that 
potentially mineable raw slurry would be in the range 
of 74,000,000 to 171,000,000 tons. 

Figure 5. Aerial photograph of a coal slurry pond, Switz City, Indiana.
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Figure 6. Map showing the locations of coal preparation plants and coal slurry ponds in Indiana after Harper and others 
(2009). See Figures 7-10 for more detailed locations, area, and volume of the ponds.
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Figure 7. Map showing coal slurry pond areas and table of 
volumes in Vermillion, Vigo, and Clay Counties. Note that 
the size of the ponds on the map is not to scale. 

ID-IGS-PLY Area [acres] Volume [m3]

A2_1 16.6 205,105

A2_2 10.8 132,855

A2_5 23.7 292,334

A2_7 69.3 6,407,198

B1_1 2.7 16,403

B1_2 0.4 2,239

B4_1 3.2 78,758

B4_2 9.8 121,151

B4_3 4.9 120,111

B4_4 10.6 261,819

B4_5 6.3 156,015

B5_1 4.4 272,132

B5_2 80.5 496,784

B5_3 6.9 42,702

B9_1 15.7 582,211

B9_2 2.5 91,363

B9_3 2.8 23,959

B9_4 42.2 364,227

B9_5 4.7 40,340

B9_6 4.8 41,369

B9_7 1.7 21,478

B9_8 1.7 21,234

B9_9 0.3 11,293

B9_10 0.9 33,317

C1_1 36.4 1,257,460

C1_2 11.0 813,994

C1_3 35.6 1,754,269

C1_5 21.1 1,041,386

C2_1 6.4 631,532

C2_2 0.7 65,218

C2_3 3.5 300,952

C2_6 5.6 381,494

C2_7 15.9 1,079,261

C2_13 9.0 939,085

C2_15 10.1 1,558,519

C2_16 2.0 208,507
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Figure 8. Map showing coal slurry pond areas and tables 
of volumes in Sullivan and Greene Counties. Note that the 
size of the ponds on the map is not to scale.
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Figure 9. Map showing coal slurry pond areas and table 
of volumes in Knox and Daviess Counties. Note that the 
size of the ponds on the map is not to scale.
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Figure 10. Map showing coal slurry pond areas and tables 
of volumes in Gibson, Pike and Warrick Counties. Note 
that the size of the ponds on the map is not to scale.
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Slurry deposits contain fine-grained refuse and, as such, 
are composed of coal fines mixed dominantly with clay 
minerals. The average ash and sulfur contents (as received) 
of 454 slurry samples from Indiana are 31.4 %, and 4.1 %, 

respectively. Heating values (as received) average 7,689 
Btu/lb, and on moisture ash-free basis, 12,972 Btu/lb, 
testifying to large proportions of coaly material. Statistical 
values for individual sites are listed in Table 4.

Mine ID-IGS No. of drill 
holes

No. of  
samples

Ash  
(ar, wt. %)

Sulfur  
(ar, wt. %)

Btu/lb 
(ar)

Btu/lb 
(maf)

Airline E3 11 99 42.4 4.4 7,143 12,657

Buckskin K3 7 17 29.0 2.7 8,589 12,873

Chinook C1 14 81 30.5 3.2 5,577 13,310

Friar Tuck D4 9 37 28.1 2.1 8,092 13,663

Green Valley B4 9 23 20.9 5.1 9,780 13,305

Hawthorn E4 11 55 45.2 5.8 6,608 11,920

Lynnville K1 6 36 35.0 4.3 8,150 13,344

Minnehaha D3 18 74 20.2 2.2 6,893 13,680

Otter Creek B1 4 4 26.7 2.6 8,893 13,025

Tecumseh K2 4 28 35.9 8.9 7,168 11,942

Sum 93 454

Average 31.4 4.1 7,689 12,972

Table 4. Ash yield, sulfur content, and heating value of slurry deposits in Indiana. Abbreviated ar – as received; maf – mois-
ture ash free basis (from Harper and others, 2009). 
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While the locations, extents and volumes of coal slurry 
deposits are relatively well documented, it is difficult 
to evaluate their REE potential because of the absence 
of REE data. To our knowledge, the only available 
REE data come from Ayrshire coal tailings in Chan-
dler, Warrick County, Indiana (Xie and others, 2022). 
The tailings come from the preparation plant that domi-
nantly handled the Springfield Coal and Hymera Coal. 
In that slurry pond, samples were collected at five 
sites. The ash content of the sediments ranged from 
31.60 to 58.35 % and sulfur content from 4.06 to 7.75 
%, a similar range to other slurry ponds in Indiana 
summarized in Table 4. At the Ayrshire pond, the total 
REE+Y+Sc on ash basis ranged from 245 to 285 ppm, 
and on whole-sample basis from 93 to 166 ppm. The 
ratio between LREE and HREE ranged from 7.53 to 
8.49 (Xie and others, 2022) (Table 5). Although the 
concentrations of REE are below what is normally 
considered an economic grade (1,000 ppm on ash basis, 
Seredin and Dai, 2012), other factors such as ease of 

obtaining the sediment, proximity to highways, rails, 
etc., favor further investigation of these types of mate-
rial. Even though the authors of the study caution 
about drawing conclusions based on only five sites, it 
is important to note that there are strong correlations 
between REE and ash yield, Al2O3, and SiO2, providing 
a strong motivation to test these relationships in other 
locations. If these relationships are confirmed, these 
parameters, and ash yield in particular, could be valu-
able proxies to delineate most REE-potential zones 
within slurry ponds.
While the slurry pond deposits in Indiana are rela-
tively well mapped by Harper and others (2009), the 
delineation of coarser-grained refuse (gobs) is not 
well known and an estimation of their volume in 
Indiana has not been attempted. These deposits, typi-
cally occurring in close proximity to slurry ponds, 
are composed of rock fragments from coal seam part-
ings, roof or floor clastic sediments, or coal portions 
rich in mineral matter. Although currently, no data 

Table 5. Concentrations of individual elements from Ayrshire coal tailings in Chandler, Indiana (after Xie and others, 
2022). Summations in blue. 

Samples 94,021 94,022 94,023 94,024 94,025 94,021 94,022 94,023 94,024 94,025

Ash (%) 58.35 39.90 31.60 57.36 43.13 58.35 39.90 31.60 57.36 43.13

Element in ppm on ash basis in ppm on whole-rock basis

Sc 14 19 20 19 19 9 8 7 12 9

Y 28 34 35 36 35 18 14 11 22 16

La 37 42 45 40 42 24 17 15 25 20

Ce 85 94 96 89 93 55 37 31 55 43

Pr 10 11 11 11 11 7 4 4 7 5

Nd 41 44 44 41 42 27 18 14 25 20

Sm 8.5 9.4 9.3 9.1 8.9 5.50 3.7 3.0 5.6 4.1

Eu 1.6 1.9 1.8 1.8 1.8 1.0 0.80 0.60 1.10 0.80

Gd 6.8 7.9 7.6 7.8 7.8 4.4 3.1 2.5 4.8 3.6

Tb 0.98 1.1 1.1 1.2 1.1 0.6 0.4 0.4 0.7 0.5

Dy 5.2 6.1 6.1 6.4 6.0 3.4 2.4 2.0 3.9 2.8

Ho 1.0 1.2 1.2 1.2 1.2 0.6 0.5 0.4 0.7 0.6

Er 2.7 3.0 3.3 3.2 3.1 1.8 1.3 1.1 2 1.4

Tm 0.38 0.47 0.48 0.45 0.45 0.25 0.19 0.2 0.28 0.21

Yb 2.4 2.9 3.0 2.8 2.7 1.6 1.2 1.0 1.7 1.3

Lu 0.35 0.45 0.45 0.41 0.42 0.23 0.18 0.2 0.25 0.2

REE1 203 226 230.0 215 221 132 90 75.0 132 103

REY2 231 260 265.0 251 256 150 103 87.0 154 119

REYSc3 245 279 285 270 275 160 111 93.0 166 128

1 REE – rare earth elements
2 REY – REE + yttrium
3 REYSc – REE + yttrium + scandium
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are available on REE concentrations in gobs in Indiana, 
from our REE data in Indiana coals (Mastalerz and 
others, 2020) we sugest that the assessment strategy 
should be to focus on gob piles related to older coal 
seams such as those of the Staunton and Brazil Forma-
tions, which were mined primarily in the more northern 
counties in Indiana along the basin margin during the 
early- to mid-20th century. The data also suggest that 
there are sufficient REE concentrations in the Spring-
field Coal to warrant evaluation of as many gob piles 
generated from mining this coal seam as can be discov-
ered. Due to the Springfield’s larger distribution and 
thickness, there are more large gob piles containing this 
waste rock than the thinner, more discontinuous older 
coal seams of the Brazil and Staunton Formations.

ACID MINE DRAINAGE
Water streams from abandoned coal mining and coal 
processing are called abandoned mine drainage or acid 
mine drainage (AMD). Mine drainage occurs when 
pyrite (a common mineral in coal) is exposed and reacts 
with water and air to form sulfuric acid and iron. The 
acidic runoff also dissolves some heavy metals such as 
nickel, zinc, or copper. Some of the dissolved iron can 

precipitate to form red, orange, or yellow sediments in 
such streams (Fig. 11). 
Waste streams from abandoned coal mines and from 
the processing of Indiana coals are typically charac-
terized by low pH and variably mineralized waters. 
Sources of these AMDs include coarse refuse piles 
(gobs), fine refuse slurries and piles (tailings), net acidic 
piles of overburden rock (spoil ridges), and f looded 
underground mine voids. The degree of mineraliza-
tion is closely tied to the presence and amount of sulfide 
minerals in the coal or coal waste. 
Highly mineralized acidic waste streams do not neces-
sarily translate to elevated concentrations of REE. Our 
preliminary investigations indicate that a more diverse 
mineralization, usually indicated by the elevated pres-
ence of aluminum and magnesium, shows the poten-
tial of containing elevated REE. The highest degrees 
of aluminum- and magnesium-enriched mineralized 
waters are associated with gob piles containing substan-
tial amounts of clastic rocks entrained in the waste pile 
during preliminary coal cleaning. The combination of 
highly acidic water enriched in sulfuric acid gener-
ated from the oxidation of abundant sulfide in gob 
piles, along with diverse mineralogy and substantial 
organic matter aggressively dissolved by the sulfuric 

Figure 11. Photographs of acid mine drainage sample collection at the Midwestern (left) and Friar Tuck (right) sites.
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Figure 12. Map showing known acid 
mine drainage sites in Indiana.
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21-Enos Seep
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acid, may result in significant concentrations of REE. 
For the purpose of evaluating the potential for economic 
deposits of REE in Indiana, it is important to locate and 
map the extent of abandoned mine land gob piles and 
evaluate the chemical composition of AMD leaching 

from them. Both surface and underground mine gob 
piles qualify for this approach. Such piles can be found 
from Vigo County in western Indiana down to Warrick 
County on the Ohio River in southern Indiana (Table 
6, Fig. 12).
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Table 6. Rare earth element concentrations from acid mine drainage seeps occurring in Indiana. 

ELEMENTS (all values in µg/l)

Sites sampled Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Green Valley A 749.5 58.96 201.3 42.62 200.5 115.7 34.78 138.3 30.71 149.1 31.13 73.91 9.940 52.27 8.400

Green Valley B 674.9 102.4 371.1 61.76 220.1 99.47 30.47 131.3 28.18 137.7 28.51 69.26 9.150 48.10 7.700

Friar Tuck 
Seep 108 1791 120.4 690.4 138.6 650.6 242.9 72.06 278.7 53.46 244.8 57.59 143.9 17.90 105.1 17.13

Lacy Seep 152.7 9.978 77.09 17.79 86.87 30.40 7.981 30.61 5.396 24.64 5.182 11.49 1.428 6.827 1.050

Lacy 
Bioreactor 

Outlet
1.002 0.272 0.740 0.065 0.245 0.077 0.044 0.091 0.013 0.065 0.016 0.035 0.005 0.020 0.004

Midwest Seep 119.2 19.39 82.55 14.18 52.62 17.53 5.137 21.17 4.099 16.15 3.984 8.59 1.112 5.194 0.843

Midwest 
Bioreactor 

Outlet
11.17 3.662 8.121 1.081 3.939 0.953 0.250 1.434 0.206 0.896 0.203 0.431 0.047 0.196 0.032

Blackfoot 
Seep 839.7 54.36 360.8 81.32 393.9 142.1 35.84 158.8 27.93 131.0 26.55 62.42 8.739 41.46 7.002

Enos Seep 27.17 20.11 44.55 7.204 19.76 5.882 1.338 6.318 0.926 4.164 0.907 2.039 0.270 1.292 0.211

Enos Acidic 
Pond 15.18 7.250 18.63 3.168 11.49 3.272 0.746 3.172 0.486 2.150 0.444 0.997 0.132 0.675 0.109

Enos 
Bioreactor 0.344 0.129 0.239 0.030 0.105 0.037 0.022 0.034 0.006 0.026 0.006 0.015 0.002 0.010 0.002

Enos VFP 
Outlet 0.279 0.261 0.836 0.050 0.178 0.053 0.022 0.059 0.008 0.034 0.008 0.020 0.003 0.015 0.003

Enos Outlet 0.111 0.126 2.128 0.026 0.083 0.035 0.026 0.042 0.005 0.017 0.004 0.010 0.002 0.009 0.002

Alcoa Seep 1696 105.6 553.9 119.2 612.5 228.2 61.70 263.3 45.57 229.5 49.51 125.4 16.75 90.06 14.49

Figure 13. Examples of principal component analysis for AMD sites in Indiana. 
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Preliminary principal component analysis (PCA) 
of chemical data collected from these sites shows 
that strong correlation occurs between aluminum, 
magnesium, zinc, and REE (Fig. 13). This correlation 
suggests that a larger set of seeps can be evaluated 
using PCA to identify locations of high REE concen-
trations utilizing standard (less expensive than REE) 
metal analyses.
Because all REE have a +3 oxidation state, there is a 
strong likelihood that AMD enriched in REE may result 
in these elements being sequestered in the aluminum 
and iron oxide precipitates that result from oxidation 
and neutralization of AMD in treatment cells (oxidation 
ponds, wetlands, and bioreactors). These treatment cell 
precipitates warrant investigation to determine if REE 
are entrained at elevated concentrations and in which 
type of treatment cell they are most concentrated, as 
this would indicate a successful, passive way of concen-
trating REE from AMD. The preliminary data (Table 
6) suggest that bioreactors may be a promising passive 
method for concentrating REE as shown at the Lacy, 
Midwest, and Enos sites. Because of the expense and 
time to have many seeps analyzed for REE, we suggest 
that a good strategy would be to use the pathfinder 
elements of aluminum, magnesium, and zinc to locate 
the most promising gob piles. Analyzing these elements 
along with calcium, iron, sulfate, and silicon would be 
more rapid, requiring less expensive instrumentation, 
and could be sufficiently informative to indicate where 
elevated REE concentrations could be expected. 

COAL COMBUSTION PRODUCTS
Coal is a heterogeneous material with a solid fraction 
composed of organic and mineral matter. Upon combus-
tion, the organic matter releases a large amount of heat 
and produces gaseous products, whereas the mineral 
fraction is turned into solid residue. This solid residue 
includes fly ash, bottom ash, boiler slag, and gypsum 
(from limestone-based flue gas desulphurization, FGD). 
Assuming that on average, coal used in a coal-fired 
power plant has ~10 % of mineral matter, then ~10 % of 
the volume of the coal feed used in the boiler remains as 
coal ash after combustion. This results in large volumes 
of coal ash produced in states that have coal-fired power 
plants. For example, in 2018, Indiana coal-fired power 
plants produced 6,849,800 tons of coal ash (American 
Coal Ash Association, 2018). 

Coal ash storage concerns
Coal combustion residue is disposed of in land-
fills, surface impoundments built in the proximity 
of the power plants, or as mine fill. Some is also 

beneficially reused in concrete or as construction mate-
rial. Coal combustion residue disposed of in landfills 
or in impoundments can be a source of water contami-
nation. The environmental risk of improperly disposed 
coal ash on Indiana’s water resources was comprehen-
sively studied by the Hoosier Environmental Council 
(Frank and Maloney, 2020). Therefore, it is of great 
importance to have clear and consistent rules regarding 
coal ash disposal. 
In the U.S., prior to 2015, states had the option of 
adopting their own requirements for safe coal ash 
disposal. Indiana had rules that applied to coal ash 
landfills and rules that applied if a coal ash impound-
ment was closed. No rules existed on ash impoundment 
site selection, construction, or whether they were moni-
tored for groundwater contamination.
In 2015, the U.S. Environmental Protection Agency 
(EPA) proposed a rule on coal ash disposal known as 
the Coal Combustion Residuals Rule, or CCR Rule. 
It introduced a set of standards for the location and 
structure of coal ash impoundments to reduce the risk 
of structural failure or water contamination, and over 
the years, several revisions to that rule were made. In 
2016, Indiana’s Environmental Rules Board adopted 
the federal CCR Rule language on impoundments. 
This rule is considered by the Indiana Department of 
Environmental Management (IDEM) to be self-imple-
menting, and not necessarily enforced. In 2015, the EPA 
issued a companion rule to the CCR Rule regarding 
the release of water that had been in contact with coal 
ash titled the “Effluent Limitation Guidelines and Stan-
dards for the Steam Electric Power Generating Point 
Source Category” and known as the ELG Rule. Issued 
under the Clean Water Act, this rule introduced limits 
on the coal ash contaminants that could be released 
into waterways as point source discharges. In 2017, the 
US Administration tabled the implementation of this 
rule, and in 2020, finalized a revision of the ELG Rule, 
which relaxed some of the limits proposed in the orig-
inal ELG Rule. 
As a result of the original CCR and ELG Rules, most 
Indiana coal-fired power plants stopped disposing of 
coal ash in impoundments and began using dry handling 
systems and landfills. Some existing coal ash impound-
ments have failed the CCR Rule location requirements 
or violated standards for groundwater protection and 
will have to close. In January 2022, the EPA released 
documents that clarify important portions of the federal 
coal ash rule (CCR Rule). These clarifications are 
meant to avoid misinterpretations and to contribute to 
more effective and environmentally sound management 
of coal ash sites in Indiana.

https://www.epa.gov/newsreleases/epa-takes-key-steps-protect-groundwater-coal-ash-contamination
https://www.epa.gov/newsreleases/epa-takes-key-steps-protect-groundwater-coal-ash-contamination
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Coal ash impoundments Company Area (acres) Volumes of ash (m3)

1-Mitchell NiSource 8.3 152,375.9

2-Bailly NIPSCO 19.51 76,523.6

3-Michigan City NIPSCO 15.0 130,739.0

4-Shaffer Station NiSource 116.2 960,468.3

5-Cayuga Duke Energy 250.5 8,169,738.1

6-Wabash Duke Energy 283.2 5,636,693.1

7-Harding Street Indiana Power & Light 102.4 283,691.4

8-Eagle Valley Indiana Power & Light 84.2 2,182,410.2

9-Edwardsport Duke Energy 12.76 gasification slag

10-Petersburg Indiana Power & Light 150.1 4,357,966.4

11-Frank E. Ratts Hoosier Energy 57 175,847.8

12-Gibson Duke Energy 423 15,742,771.2

13-A.B. Brown Vectren 156 4,687,333.0

14-F.B. Culley S IN Gas and Electric 43 1,010,222.5

15-Rockport American Electric Power 111.1 390,687.9

16-Gallagher Duke Energy 158.5 5,828,676.8

17-Clifty Creek IN-KY Electric Corporation 115 2,633,561.9

18-Tanners Creek Indiana Michigan Power 91.4 246,446.8

Table 7. Compilation of coal ash impoundments, their areas, and the volumes of coal ash available at individual sites. For 
site locations, see Figure 14.

Quantities of coal ash in Indiana
In total, coal ash deposits occupy ~2,184 acres, storing 
~52,566,153 m3 of ash (Table 7, Figs. 14-15). The data for 
individual sites come from various sources (dominantly, 

site closure reports of various companies) and present our 
best estimates at this time. However, the volumes of ash 
change as a result of the beneficial use or displacement of 
the material in response to EPA regulations. 
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Figure 14. Map of coal combustion waste impoundments in Indiana (IndianaMAP). 
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Coal ash composition
Composition of coal ash has been well researched 
worldwide, to a large extent because of environmental 
concerns (e.g., Silva and others, 2012; Saikia and 
others, 2015. In Indiana, Mastalerz and others (2004) 
studied relationships between the properties of the 
low-sulfur Danville Coal and the high-sulfur Spring-
field Coal and their corresponding ashes (Table 9). From 
the baghouse ash collection system, Danville Coal ash 
yield ranged from 64.4 to 98.1 weight %, and carbon 
(C) content ranged from 0.84 to 22.73 weight % (Table 
8). Sulfur (S) content ranged from 0.19 to 0.29 %. SiO2 
ranged from 54.5 to 63.7 % and Al2O3 from 21.7 to 25.8 

weight %. Fly ash from the high-sulfur Springfield Coal 
contained more than 95 % ash and about 3 % C. Sulfur 
content ranged from 0.66 to 0.80 %, higher than in the 
Danville ash. SiO2 ranged from 40.5 to 44.6 and Al2O3 
ranged from 17 to 19.6 % (Tables 10-11). Mastalerz 
and others (2004) concluded that the properties of fly 
ash from these coals reflect the properties of the feed 
coal, as well as local combustion (e.g., temperature) 
and post-combustion (e.g., ash collection conditions). 
Sulfur and spinel content, as well as arsenic (As), lead 
(Pb), and zinc (Zn) concentrations of the fly ash, are the 
parameters that most closely reflect the properties of the 
feed coal.

Figure 15. Bar graph showing volumes of coal ash available at individual sites in Indiana. For site locations, see Figure 11. 
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Table 8. Table showing properties of fly ash from low-sulfur Danville Coal in comparison to pulverized coal and delivered 
coal (from Mastalerz and others, 2004). Abbreviated as B-boiler, BH-baghouse, RPH-rear pass hopper, PC-pulverized 
coal, nd-not determined, wt-weight.

Parameter Unit B1
BH1

B1
BH3

B1
BH5

B1
BH7

B1 
average

B2
BH2

B2
BH4

B2
BH6

B2
BH8

B2 
average

B1
RPH

B1
PC

B2
PC

Mine 
product 
washed

Ash wt % 73.3 74.1 64.4 72.5 71.08 77.3 69.5 76.5 81.5 76.2 98.10 9.94 10.40 9.84

Moisture wt % 0.85 0.91 1.00 0.88 0.91 0.66 0.71 0.74 0.66 0.69 0.34 3.31 3.30 7.27

VM wt % 3.65 3.17 3.19 3.03 3.26 1.90 1.89 2.02 2.20 2.00 1.74 32.03 32.30 nd

FC wt % 21.03 21.23 18.33 23.24 20.96 19.71 17.40 17.82 14.69 17.41 0.01 51.25 52.03 nd

C wt % 22.71 22.73 17.60 24.20 21.81 20.71 18.31 19.00 15.71 18.43 0.84 69.04 69.78 nd

H wt % 0.23 0.20 0.18 0.21 0.21 0.15 0.12 0.14 0.10 0.13 0.07 5.47 5.34 nd

N wt % 0.36 0.36 0.26 0.38 0.34 0.29 0.26 0.26 0.20 0.25 0.01 1.62 1.65 nd

Stotal wt % 0.34 0.35 0.30 0.32 0.33 0.19 0.19 0.23 0.19 0.20 0.29 0.48 0.45 0.508

O wt % 1.83 1.38 3.82 1.96 2.25 0.85 0.92 0.81 1.23 0.95 0.67 13.87 12.96 nd

Hg ppm 0.19 0.13 0.12 0.17 0.15 0.20 0.15 0.22 0.21 0.20 0.01 0.02 0.02 < 0.02

Cl % < 0.02 0.03 0.05 0.03 0.04 0.02 0.02 0.02 0.02 0.02 0.03 0.1 0.10 0.11

SiO2 % 63.7 58.8 54.5 57.9 58.7 59.4 58.9 56.1 62.9 59.3 58.0 51.7 54.8 54.1

Al2O3 % 25.8 24.0 22.5 23.4 23.9 23.6 22.7 21.7 25.1 23.3 22.6 21.7 22.4 23

Fe2O3 % 6.0 5.6 9.6 7.1 7.1 8.8 9.2 9.0 5.5 8.1 11.7 5.8 4.9 5.7

CaO % 1.7 1.7 6.0 2.6 3.0 2.3 4.0 3.0 1.3 2.7 1.6 1.4 1.3 1.3

MgO % 1.5 1.4 1.4 1.4 1.4 1.5 1.4 1.4 1.5 1.5 1.3 1.3 1.4 1.4

Na2O % 1.10 1.00 0.78 1.00 0.97 0.94 0.95 0.96 1.10 0.99 1.00 1.00 1.30 1.20

K2O % 3.6 3.4 2.9 3.4 3.3 3.3 3.0 2.9 3.5 3.2 3.1 3.0 3.4 3.2

P2O5 % 0.12 0.13 0.16 0.12 0.13 0.12 0.14 0.12 0.12 0.13 0.13 0.10 0.12 0.13

TiO2 % 1.4 1.3 1.0 1.2 1.2 1.3 1.2 1.2 1.5 1.3 1.4 1.3 1.4 1.3

SO3 % 0.29 0.27 0.74 0.52 0.46 0.26 0.65 0.35 0.10 0.34 0.43 0.96 1.00 1.10

Hyd Se ppm 6.8 7.2 6.9 6.0 6.7 39.6 23.4 12.6 10.3 21.5 3.0 0.6 0.6 0.7
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Table 9. Table showing trace elements of fly ash from low-sulfur Danville Coal in comparison to pulverized coal and coal 
delivered to the plant (mine product), (from Mastalerz and others, 2004). Abbreviated as B-boiler, BH-baghouse, RPH-
rear pass hopper, PC-pulverized coal.

Parameter Unit B1
BH1

B1
BH3

B1
BH5

B1
BH7

B1 
average

B2
BH2

B2
BH4

B2
BH6

B2
BH8

B2 
average

B1
RPH

B1
PC

B2
PC

Mine 
product 
washed

Ag ppm < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2

As ppm 17.5 18.8 9.3 16.7 15.6 21.3 15.4 17.4 21.6 18.9 61.6 21.6 18.9 15.9

Au ppm < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10

Bi ppm 0.59 0.61 0.22 0.48 0.48 0.99 0.54 0.51 0.82 0.72 0.50 0.76 0.39 0.46

Cd ppm 5.2 4.2 10.4 5.6 6.4 4.5 4.6 7.3 5.1 5.4 5.1 6.0 4.1 5.9

Cs ppm 13.6 13.8 10.3 13.3 12.8 12.1 12.0 12.2 14.1 12.6 12.1 13.6 12.5 14.1

Ga ppm 35.5 37.7 22.3 34.7 32.6 30.5 26.8 31 38.6 31.7 32.0 43.0 40.9 43.0

Ge ppm 250 268 111 218 212 200 153 188 275 204 214 207 180 202

Mo ppm 42.9 43.4 28.8 39.6 38.7 38.5 37.2 42.5 46.2 41.1 39.1 39.3 37.2 43.2

Nb ppm 18.2 18.6 11.8 16.8 16.4 16.1 15.1 16.3 26.0 18.4 17.7 19.6 32.7 19.3

Pb ppm 74.2 79.1 36.9 74.3 66.1 63.1 54.1 64.7 84.8 66.7 102.0 103.0 70.0 69.2

Rb ppm 193 199 153 194 185 176 174 178 201 182 176 186 175 193

Sb ppm 47.9 51.1 26.8 45.4 42.8 41.4 37.0 41.6 58.4 44.6 42.4 42.1 45.7 42.0

Sn ppm 10.3 10.5 6.3 9.2 9.1 10 9.0 9.1 19.6 11.9 8.5 13.3 13.1 9.8

Te ppm 0.35 0.34 0.22 0.28 0.30 0.4 0.3 0.3 6.5 1.9 0.4 0.2 1.8 0.3

Tl ppm 1.6 1.8 0.7 1.5 1.4 1.7 1.1 1.3 2.0 1.5 3.6 2.4 1.6 2.0

U ppm 11.8 12.2 7.9 11.4 10.8 10.9 10.6 11.2 13.2 11.5 12.4 10.5 10.0 10.5

Be ppm 24.6 25.1 14.0 22.3 21.5 20.7 17.5 19.2 24.1 20.4 20.9 25.8 23.1 27.6

Co ppm 68.7 70.2 43.9 63.9 61.7 60.0 53.1 59.0 71.5 60.9 69.6 82.3 94.1 83.6

Cr ppm 155 159 113 148 144 144 138 138 145 141 157 172 182 147

Cu ppm 92.0 87.2 80.3 95.0 88.6 90.5 89.8 100.0 94.9 93.8 90.5 250.0 138.0 114.0

Li ppm 91.5 93.5 95.0 93.1 93.3 90.9 94.1 88.8 93.8 91.9 94.4 87.0 88.0 90.7

Mn ppm 399 383 1270 626 670 627 942 951 359 720 466 405 360 427

Ni ppm 311 318 178 282 272 264 230 254 326 269 296 517 463 342

Sc ppm 34.8 35.5 27.7 33.4 32.9 32.5 30.7 32.0 35.5 32.7 34.5 39.3 39.2 46.8

Sr ppm 389 387 393 390 390 356 374 373 381 371 391 408 424 464

Th ppm 16.4 16.3 13.4 20.1 16.6 16.4 25.8 17.8 18.5 19.6 19.2 20.8 21.0 21.3

V ppm 278 276 185 260 250 244 229 240 292 251 274 284 352 297

Y ppm 44.3 44.0 36.1 43.8 42.1 41.4 41.0 42.8 47.1 43.1 47.1 37.3 43.7 39.4

Zn ppm 507 446 1380 667 750 519 534 718 476 562 475 556 445 658

B ppm 691 765 632 640 682 780 790 739 814 781 545 1180 1090 1140

Ba ppm 540 522 457 500 505 510 492 461 544 502 476 470 488 493

Zr ppm 343 356 262 305 317 327 279 288 351 311 316 331 348 330
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Table 10. Table showing properties of fly ash from high-sulfur Springfield Coal in comparison to pulverized coal (from 
Mastalerz and others, 2004). Abbreviated as FA-fly ash, PC-pulverized coal, FDG-flue gas desulfurization, nd-not deter-
mined, wt-weight.

Parameter Unit Unit 2 
econ. east 

FA

Unit 3 
econ. east 

FA

Unit 3 
econ. west 

FA

Unit 2 + 3 
FGD  

gypsum

Unit 3
Mill C1

PC

Unit 3
Mill B1

PC

Unit 3
Mill E

PC

Unit 2
Mill B3

PC

Unit 2
Mill A

PC

Ash wt % 96.10 95.70 95.90 77.30 16.50 14.20 13.30 14.30 15.40

Moisture wt % 0.43 0.47 0.44 0.69 2.59 2.57 2.74 2.48 2.33

VM wt % 2.46 3.60 2.45 13.13 nd 36.88 37.54 37.79 37.97

FC wt % 1.80 1.49 1.51 1.12 nd 43.19 44.46 43.51 43.32

C wt % 3.32 3.11 3.28 0.09 nd 62.61 65.17 64.51 64.61

H wt % 0.03 0.05 0.07 2.43 nd 5.12 5.36 5.14 5.28

N wt % 0.01 0.01 0.01 0.01 nd 1.29 1.32 1.29 1.26

Stotal wt % 0.70 0.80 0.66 20.7 5.35 5.49 5.16 5.52 5.19

Spyr wt % nd nd nd nd nd 2.42 2.20 2.55 2.22

Ssulf wt % nd nd nd nd nd 0.31 0.24 0.13 0.19

Sorg wt % nd nd nd nd nd 2.76 2.72 2.84 2.78

O wt % 0.41 0.96 0.26 0.01 nd 10.40 10.18 8.64 9.87

Hg ppm 0.02 0.01 0.02 0.04 0.06 0.08 0.08 0.08 0.07

Cl % < 0.02 < 0.02 0.02 0.02 0.03 0.02 0.02 0.04 0.04

SiO2 % 44.6 41.9 40.5 1.7 35.6 34.8 34.7 32.1 33.1

Al2O3 % 19.6 17.6 17.0 0.3 15.7 15.6 14.9 14.5 14.8

Fe2O3 % 28.9 27.6 30.7 0.4 25.0 26.3 25.7 22.8 26.6

CaO % 8.6 8.5 9.4 45.8 7.0 7.9 7.3 7.6 7.4

MgO % 1.20 1.00 0.99 0.06 0.92 0.95 0.88 0.84 0.89

Na2O % 0.59 0.55 0.49 0.01 0.57 0.59 0.51 0.54 0.52

K2O % 2.8 2.4 2.4 0.1 2.5 2.1 2.0 2.0 2.1

P2O5 % 0.17 0.18 0.17 0.02 0.15 0.19 0.18 0.16 0.16

TiO2 % 0.88 0.78 0.75 < 0.02 0.7 0.74 0.72 0.66 0.69

SO3 % 1.5 1.6 1.4 59.8 4.4 4.4 4.0 3.7 4.0

Se ppm 7.4 5.3 5.1 0.8 3.8 4.6 3.9 6.1 4.2
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Table 11. Table showing trace elements of fly ash from high-sulfur Springfield Coal in comparison to pulverized coal and 
petrographic composition of fly ash (from Mastalerz and others, 2004). Abbreviated as FA-fly ash, PC-pulverized coal, 
FDG-flue gas desulfurization.

Parameter Unit
Unit 2 

econ. east 
FA

Unit 3 
econ. east 

FA

Unit 3 
econ. 

west FA

Unit 2 + 3 
FGD  

gypsum

Unit 3
Mill C1

PC

Unit 3
Mill B1

PC

Unit 3
Mill E

PC

Unit 2
Mill B3

PC

Unit 2
Mill A

PC

Ag ppm < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2

As ppm 66.3 82.8 52.7 < 0.2 72.7 78.0 75.8 56.4 56.4

Au ppm < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10

Bi ppm 0.41 0.37 0.19 < 0.10 0.38 0.38 0.36 0.36 0.32

Cd ppm 6.2 7.1 4.8 0.1 5.3 7.7 9.6 7.2 5.0

Cs ppm 9.3 8.4 7.3 < 0.1 7.6 7.3 7.0 7.3 7.2

Ga ppm 20.5 19.1 14.7 0.3 20.0 20.7 21.1 19.2 19.0

Ge ppm 19.0 27.2 19.4 0.3 18.0 23.3 27.9 19.7 17.2

Mo ppm 50.0 53.7 41.6 1.6 43.2 52.4 48.4 46.0 39.2

Nb ppm 9.9 9.5 8.4 0.1 8.0 8.5 8.8 8.2 8.4

Pb ppm 31.4 33.4 25.3 < 0.5 26.9 31.9 35.6 27.2 25.4

Rb ppm 140 131 117 1.6 116 112 108 111 109

Sb ppm 10.6 8.3 6.2 0.2 5.2 6.6 7.2 7.9 6.8

Sn ppm 5.8 5.7 4.1 < 3.0 5.8 4.9 4.8 4.4 4.7

Te ppm 0.35 0.36 0.29 < 0.10 0.29 0.29 0.28 0.28 0.24

Tl ppm 11.9 12.8 9.2 < 0.1 11.4 11.7 12.3 11.9 12.1

U ppm 24.4 22.6 21.7 0.57 16.7 20.3 19.0 21.1 18.6

Be ppm 9.2 9.2 8.2 1.0 8.0 9.0 9.8 8.4 8.2

Co ppm 27.7 30.0 27.6 2.0 30.3 32.4 32.1 30.0 30.3

Cr ppm 152 141 140 3 162 138 132 141 143

Cu ppm 100.0 84.0 85.5 5.8 98.6 103.0 97.9 114.0 102.0

Li ppm 74.7 77.9 79.0 55.0 79.5 78.6 71.5 64.8 70.6

Mn ppm 462 530 522 10 434 507 436 494 456

Ni ppm 91 104 102 4 120 110 112 157 99

Sc ppm 18.8 18.2 17.1 4.0 25.3 26.5 25.6 23.6 23.8

Sr ppm 208 216 214 494 244 278 280 252 251

Th ppm 17.6 13.1 14.4 7.6 17.1 17.1 14.0 14.3 13.9

V ppm 286 310 295 2.2 280 342 312 305 269

Y ppm 446.0 45.0 44.7 8.8 44.6 48.4 46.5 42.0 41.5

Zn ppm 351 318 232 39.2 361 337 372 348 336

B ppm 1,300 1,160 1,060 < 20 860 1,010 1,040 932 862

Ba ppm 407 356 354 22 327 322 311 317 323

Zr ppm 167 162 145 40 125 128 136 124 123
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Coal ash has been suggested as one of the more prom-
ising sources for REE (e.g., Blissett and others, 2014; 
Franus and others, 2015; Hower and others, 2020; 
Pan and others, 2020). Kolker and others (2017) indi-
cated that these elements are concentrated in the glass 
phase, the most abundant component of coal fly ash, 
and suggested that this fraction should be targeted for 
further concentration and extraction. 
To our knowledge, no REE data are available on coal 
ash deposits in Indiana. The association of REE with 
mineral matter in numerous coals in other areas (e.g., 
Seredin and Dai, 2012; Dai and others, 2018), and 
commonly mentioned correlations between Al and REE 
(Franus and others, 2015; Kolker and others, 2017; Lin 
and others, 2017; Kolker and others, 2021) point to coal 
ash deposits as a promising source of REE, especially 
considering the large volumes of coal ash available in 
Indiana (Table 6). However, a well-designed geochem-
ical survey that would include REE as well as major, 
minor, and trace element analyses is necessary to deter-
mine REE concentrations and identify the most prom-
ising deposits. 

CONCLUSIONS
The available REE data on Indiana coals show that 
these coals represent low-grade source material and 
that the Staunton Formation and Brazil Formation coals 
are generally richer in REE than the coals of the Linton, 
Petersburg, or Dugger Formations. However, we note 
that to better understand REE potential of Indiana 
coals, more high-quality data collected using modern 
sensitive techniques are needed on REE concentrations 
and REE associations. 
Few data are available on coal preparation plant waste 
from Indiana; the available data come from one slurry 
pond. Correlations between REE and ash yield, SiO2, 
and Al2O3 provide a strong motivation to test these rela-
tionships in other locations. If such relationships are 
confirmed, these commonly available parameters could 
be valuable proxies to delineate the most REE-potential 
zones within slurry ponds.
No data are available on REE concentrations in gobs in 
Indiana, but based on our REE data in Indiana coals, 
we suggest that the assessment strategy should be to 
focus on gob piles related to older coal seams such as 
those of the Staunton and Brazil Formations which 
were mined primarily in the more northern counties in 
Indiana along the basin margin. The data on coals also 
suggest that there is sufficient REE concentration in the 
Springfield Coal to warrant evaluation of as many gob 
piles generated from mining this coal seam as can be 
discovered.

In addition to locating and mapping the extent of aban-
doned mine land gob piles, it is also important to eval-
uate the chemical composition of AMD leaching from 
them, both surface and underground. Such piles can be 
found from Vigo County in western Indiana down to 
Warrick County on the Ohio River in southern Indiana. 
Preliminary PCA chemical data collected from AMD 
sites show that there is a strong correlation between 
aluminum, magnesium, zinc, and REE. This correla-
tion, although preliminary, strongly suggests that a 
larger set of seeps can be evaluated using PCA to iden-
tify the most potential REE sites. 
To our knowledge, no REE data are available on coal 
ash deposits in Indiana and this type of data are in 
great demand. The association of REE with mineral 
matter in numerous coals in other areas, and commonly 
mentioned correlations between Al and REE, point to 
coal ash deposits as a very promising source of REE, 
especially considering the large volumes of coal ash 
available in Indiana. 
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