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Arthur L. Gershon

NEW DIRECTIONS IN THE ENUMERATION OF TILINGS OF A

CHESSBOARD

We investigate the number of arrangements of 1× n rectangular strips of varying length

on a chessboard, where each strip is endowed with a natural horizontal or vertical

direction. Our principal aim is to study the number of Restricted Oriented Strip

Arrangements, or ROSAs, on a chessboard with at most one horizontal strip in each row

and at most one vertical strip in each column; these ROSAs have a natural interpretation

as a variation on an important model in statistical physics. Using transfer matrices, we

obtain exact formulas for the number T (m,n) of ROSAs on an m× n rectangle for certain

fixed positive integers m and any non-negative integer n. For general m, we deduce the

asymptotic formula

T (m,n) ∼ 1

(m!)2

m∏
j=1

[
1 +

(
j

2

)
+

(
m+ 1− j

2

)]
nm
(

1 +

(
m+ 1

2

))n
as n→∞. We also apply the previous transfer matrix methods to compute generating

functions for the numbers of strip arrangements in which the aforementioned restriction

on the number of strips in each row and column is dropped. Finally, returning to the

restricted case, we look at ROSAs on square chessboards; using convex analysis, we obtain

for large L the logarithmic estimate

log T (L,L) = 4L logL− 2L log 8 +O(L2/3)
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CHAPTER 1

INTRODUCTION & MOTIVATION

1.1 Background

Consider the two-dimensional square lattice Λ. A polyomino on Λ is defined to be a

polygon that is congruent to some edge-connected collection of unit squares on Λ. Given a

set τ of non-congruent tiles, or polyominoes, on Λ, the enumerative tiling problem for τ on a

rectangular region R of Λ of finite area – which we will refer to colloquially as a chessboard

– asks for the number of ways to partition the unit squares of R into polyominoes congruent

to some element of τ . In this tiling problem, one typically requires that each and every unit

square of the chessboard R be covered by some tile of τ . One can relax this condition, and

consider the enumeration of ways to place tiles on R so that each unit square is covered by

at most one tile; we call these tile placements arrangements to distinguish them from the

previous complete tilings (although we consider complete tilings to be included in the set

of arrangements).∗

∗One can generalize the notions of this paragraph, taking Λ to be any lattice – and thereby redefining

polyominoes on Λ to be a collection of edge-connected fundamental regions – and taking R to be any region

in Λ of finite area. For the most part, however, we will not have occasion to worry about such generalities.
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One of the more classical tiling/arrangement enumeration problems studied is the dimer

(or domino) problem, which asks for the number D(m,n) of tilings of m × n chessboards

by dimers, or 1 × 2 rectangles, when the area mn of the containing chessboard is even.†

Originally using graph-theoretic techniques, this problem has been solved exactly:

Theorem 1.1 (Kasteleyn, Temperley-Fisher; see Aigner [2]). If mn is even,

D(m,n) =
m∏
k=1

n∏
`=1

[
4 cos2

(
kπ

m+ 1

)
+ 4 cos2

(
`π

n+ 1

)]1/4

Another related classical problem is the monomer-dimer problem, which asks for the

number of tilings of an m × n rectangle using 1 × 2 dimers as well as 1 × 1 monomers.

Removing these monomers, this problem of enumerating tilings can be viewed as a problem

of enumerating arrangements of dimers. Unfortunately, an exact formula for the number of

monomer-dimer tilings, or dimer arrangements, is not known.

One can generalize the problems of enumerating tilings and arrangements of 1×2 dimers

to problems using any single straight polyomino – that is, considering the tilings and ar-

rangments of 1 × k strips on a chessboard for a fixed positive integer k; Mathar [12] gives

some results in these related directions. We aim to generalize the problem further, as we

consider the number of arrangements that allow any number of strips of any length (pro-

vided, of course, that said strips fit on the chessboard). We give an example of the type of

arrangement we have in mind in Figure 1.1(a).

†In the vein of the previous footnote, we note the related classical problem of enumerating the tilings

of hexagonal regions in the triangular lattice by edge-connected pairs of triangles, typically called lozenges.

This problem has also been completely solved: the number of lozenge tilings of a hexagon is zero if its

opposite sides are not congruent; otherwise, if a, b, and c denote the lengths of three consecutive sides of

the hexagon, the number of lozenge tilings is given by a plane partition formula of MacMahon [11]:

L(a, b, c) =

a∏
i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2
=

H(a)H(b)H(c)H(a + b + c)

H(a + b)H(b + c)H(c + a)

where, for any positive integer n, H(n) = (1!)(2!) . . . (n!) denotes the hyperfactorial of n.
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(a) (b)

Figure 1.1: Generic strip arrangements on an 8 × 8 chessboard. Figure 1.1(a) depicts

an Un-Restricted Strip Arrangement (or URSA) that allows any number of strips in any

row or column, whereas Figure 1.1(b) depicts a Restricted Oriented Strip Arrangement (or

ROSA). We include arrows to easily indicate the direction of each strip; we note that such

distinctions are required for strips of unit length on a ROSA.

In addition, we notice that each strip of length ` > 1 has a natural horizontal or vertical

orientation in the chessboard according to its longest side. We can extend this notion to

1×1 tiles by artificially imposing an orientation on each (so that in fact we have two possible

monomers: one vertical, and one horizontal). We are therefore able to ask questions about

strip arrangements that take these orientations into account; these orientations are the

“directions” alluded to in the title of this dissertation. One interesting problem in this spirit

is to determine the number of strip arrangements that have at most one horizontal strip in

each row and at most one vertical strip in each column (like the arrangement illustrated in

Figure 1.1(b)). The enumeration of such arrangements, which we call Restricted Oriented

Strip Arrangements, or ROSAs, is the primary focus of this dissertation.
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1.2 An Alternative Interpretation

The problems of enumerating various tilings and arrangements on a chessboard are

of intrinsic interest to mathematicians as problems that can be simply stated but resist

attempts at a complete solution by elementary means. However, these and other related

combinatorial problems (e.g., the enumeration of graph colorings) are of a broader scientific

interest. In physics, such arrangements often correspond to models of particles and their

interactions; a statistical theory of particle interactions, therefore, has great interest in the

enumeration of all possible configurations of the desired particles.

For example, tilings of a chessboard by dominoes that we discussed previously corre-

spond to a two-dimensional Ising model illustrating bonds between magnetically charged

particles arranged on a square lattice so that no two nearest neighbor particles have an

identical charge (see Baxter [3] or Thompson [17]). Alternatively, Lieb realized the model

by assigning up and down arrows to each unit square with the conditions that

• There is no adjacent pair of up arrows in any column.

• In any row, the collection of down arrows that do not point to an up arrow can be

partitioned into adjacent pairs.‡

It is this coloring of the unit squares (illustrated in Figure 1.2) that led Lieb to his novel

algebraic exact solution of the dimer tiling problem [10], as opposed to the graph theo-

retic solutions previously mentioned. Lieb’s methods can also be used (see Percus [14]) to

determine an asymptotic formula

D(2m, 2n) ∼ exp

(2m)(2n)

π

∞∑
j=0

(−1)j

(2j + 1)2

 = exp

[
(2m)(2n)

π

{
1− 1

32
+

1

52
− 1

72
+ . . .

}]

for the number of dimer coverings on a 2m× 2n chessboard as m,n→∞.

‡In the corresponding arrangement enumeration problem, this condition may be dropped.
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(a) A domino tiling of an 8× 8 chessboard. (b) Lieb’s coloring of an 8× 8 chessboard that

corresponds to the tiling of Figure 1.2(a).

Figure 1.2

As another example, we consider the Problem of Kings, which asks for the number of

ways to place a maximum number of non-attacking kings on a 2m×2n chessboard – that is,

the number of ways to place objects on unit squares in a square lattice so that no two placed

objects are adjacent horizontally, vertically, or diagonally. If one considers the square lattice

with the upper-left to lower-right diagonals, then, as Baxter [3] illustrates, the Problem of

Kings corresponds to the hard hexagon model of statistical mechanics (albeit without the

usual periodic boundary conditions).§

In the style of the previous example, we note an alternative realization of the model.

In the case where each dimension of the ambient chessboard is even and each square of the

chessboard either contains a king or is adjacent to a square containing a king, Wilf [20]

assigns a four-coloring to each of the disjoint 2 × 2 square subregions that represents the

§It is worth noting that Baxter, in the same reference, is able to solve for the thermodynamic properties

of the hard hexagon model exactly.
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position of the king in that region, and he is thus able to correlate valid configurations of

non-attacking kings on a 2m× 2n chessboard to four-colorings of an m×n chessboard that

respect a list of non-adjacency conditions (given by Wilf). We illustrate a configuration of

non-attacking kings and Wilf’s corresponding coloring in Figure 1.3.

Such models can be realized in various ways, and each viewpoint may be useful in

its own right. To wit, we note that Larsen, in his independent study of the Problem of

Kings [9], realizes the model using a pair of two-colorings – which is surely equivalent to a

four-coloring. Similarly as in Lieb’s analysis of the dimer problem described earlier, the first

color is represented by a vertical arrow (either Ò or Ó), and the second color is represented

by a horizontal arrow (either Ð or Ñ). Then, in a manner again similar to Lieb’s work,

the non-adjacency conditions corresponding to valid placements of non-attacking kings on

a chessboard admit a concise verbal description:

• In any column, a Ó cannot be above a Ò.

• In any row, a Ñ cannot be to the left of a Ð.

K K K K K K

K
K K K K K

K K K
K K K

K K K K
K K

(a)

K K K K K K

K
K K K K K

K K K
K K K

K K K K
K K

1 1 1 1 1 1

3 1 1 1 2 2

3 3 3 2 2 2

3 4 4 4 2 2

(b)

Figure 1.3: Figure 1.3(a) depicts a placement of 24 = (8/2)∗ (12/2) mutually non-attacking

kings on an 8×12 chessboard that was originally used as an example by Larsen [9], whereas

Figure 1.3(b) shows Wilf ’s coloring of a 4× 6 chessboard corresponding to Figure 1.3(a).
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• (Ó,Ñ) cannot be adjacent on its bottom-right corner to (Ò,Ð).

• (Ò,Ñ) cannot be adjacent on its top-right corner to (Ó,Ð).

This coloring also has the benefit that the horizontal and vertical directions can be analyzed

independently, and the corresponding results can be united by more careful reasoning.

Turning now to our case of enumerating ROSAs, we note that, in each row, the unit

squares can be colored, or classified into states, as follows:

• State 0: A strip has not yet been seen in this row. Alternatively, the unit square is to

the left of the horizontal strip in this row, or there is no horizontal strip in this row.

• State 1: The unit square is covered by a horizontal strip.

• State 2: A strip has already been seen in this row. Alternatively, the unit square is

to the right of the horizontal strip in this row.

A similar coloring can be used for columns with respect to vertical strips. Hence, like

Larsen’s work above, we have a pair of three-colorings, or a nine-coloring, for each square

of the chessboard. However, one of these colors is not compatible with the condition that

strips are not to overlap, so we are left with eight. (Figure 1.4 gives a pictorial description

of these colors; Figure 1.5 shows an eight-coloring for a given ROSA.) Such eight-vertex

models are of particular interest in statistical mechanics as generalizations of the six-vertex

model of water molecules in an ice lattice (see Baxter [3] for more details).

We find this alternative perspective to be of great service to our pure mathematical

interests of enumerating strip arrangements. The view of ROSAs as models of statistical

physics opens our problem to techniques used in this discipline, such as the method of

transfer matrices, used by Lieb [10] in enumerating dimer tilings and by Wilf [20] in the

Problem of Kings, and the method of renormalization, used by Larsen [9] in his results on

the Problem of Kings. It is our hope that our findings may reciprocally be of use to other

scientists, including those who study statistics of various molecular configurations.

7



7 = (2, 0)

before horizontal

under vertical

8 = (2, 1)

within horizontal

under vertical

9 = (2, 2)

after horizontal

under vertical

4 = (1, 0)

before horizontal

within vertical

5 = (1, 1)

within horizontal

within vertical

6 = (1, 2)

after horizontal

within vertical

1 = (0, 0)

before horizontal

above vertical

2 = (0, 1)

within horizontal

above vertical

3 = (0, 2)

after horizontal

above vertical

Figure 1.4: Translation of a ROSA into pairs of 3-colorings of unit squares of a chessboard

with eight allowed colors and one disallowed color.

4 1 2 2 2 2 2 6

4 1 1 4 1 2 3 6

4 2 2 6 3 6 3 6

4 1 1 4 2 2 2 6

7 1 1 7 1 7 1 4

7 4 1 7 2 9 6 6

8 8 2 9 3 9 6 6

7 8 2 8 2 8 8 6

Figure 1.5: The eight-vertex model that corresponds to the ROSA given in Figure 1.1(b).
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1.3 Overview of the Results

In Chapter 2, we investigate the number T (m,n) of ROSAs on an m × n chessboard,

where m is taken to be some fixed positive integer and n is allowed to be any non-negative

integer. We are able to compute T (m,n) exactly for small m by direct combinatorial

reasoning. For larger m, we turn to the theory of transfer matrices, which illustrates how

to build a ROSA one column at a time, and thereby computes for us the corresponding

generating function Tm(x) =
∑

n≥0 T (m,n)xn.

More specifically, for each fixedm, we show how the 3m possible columns can be arranged

as the vertices of a vertex-weighted directed graph Gm. There is a proper subset V0 of

vertices (i.e., columns) that can begin a ROSA; it then follows that T (m,n) is equal to the

number of weighted directed walks on Gm whose initial vertex belongs to V0. From the

particular construction of Gm, we see that there is a unique starting vertex u ∈ V0 (namely

the origin, or the m-tuple consisting solely of zeroes) for which there is an edge from u to

every other vertex of V0, and no edge from u to any other edge of Gm. We determine that,

if Fv(x) is the generating function for which the coefficient of x` is the number of walks on

Gm of length ` beginning at the vertex v, and w(v) is the weight of v,

Fu(x) = 1 + w(u)x
∑
v∈V0

Fv(x) = 1 + w(u)xTm(x) (1.2)

We remark that Equation 1.2 represents a general philosophy that applies not just to walks

on the particular graph Gm, but to walks on any (vertex-weighted directed) graph whose

desired start vertices are connected to a single start vertex (see p. 11).

We then construct a 3m× 3m diagonal matrix Dm that captures the number of ways to

place vertical strips in each column, and a 3m × 3m matrix Am that captures how we can

transfer from one column to the next. With these matrices in hand, we are able to compute

the left-hand side of Equation 1.2, and thereby obtain the generating function

9



Theorem 1.3 (Theorem 2.15, p. 25).

Tm(x) =

(
1(

m+1
2

)
+ 1

)
e0 · [(I3m − xDmAm)−1 ·Dm] · (e0 + · · ·+ e3m−1)t

In other words, Tm(x) is the sum of all of the entries in the zeroth row (under an indexing

scheme given in Chapter 2) of the matrix (I3m − xDmAm)−1 ·Dm, where I3m denotes the

3m × 3m identity matrix, divided by the constant 1 +
(
m+1

2

)
.

We then use Theorem 1.3 to actually compute generating functions Tm(x) for some new

values of m that we could not obtain from the previous direct arguments. We thus compute,

via partial fraction decomposition of Tm, exact formulas for T (m,n) for these values of m

and for all integers n ≥ 0.

The transfer matrix methods require exponentially more computations as m increases,

and so we are unfortunately not able to provide an exact formula for all m. However, the

exact formulas that we do compute provide clues toward an asymptotic formula; we close

Chapter 2 by proving this asymptotic formula, namely

Theorem 1.4 (Theorem 2.29, p. 41).

T (m,n) ∼ 1

(m!)2

m∏
j=1

[
1 +

(
j

2

)
+

(
m+ 1− j

2

)]
nm
(

1 +

(
m+ 1

2

))n
as n→∞ for any fixed integer m.

using other combinatorial arguments not involving transfer matrices; finally, we discuss how

it may be possible to unite these results using the preceding transfer matrix theory.

In Chapter 3, we make a slight digression to study those strip arrangements on a chess-

board for which the number of horizontal strips in each row and the number of vertical

strips in each column is not restricted (to at most one each). We note that such strip

arrangements also have an interpretation in statistical physics. Indeed, we may classify the

unit squares in each row into states as follows:

10



• State 0̃: The unit square is not covered by any horizontal strip.

• State 1̃: A horizontal strip begins on this unit square. That is, the unit square is

covered by a horizontal strip that does not cover the square’s nearest left neighbor.

• State 2̃: A horizontal strip is continued on this unit square. That is, the unit square

is covered by a horizontal strip that covers the square’s nearest left neighbor.

Using a similar characterization for vertical strips in columns, taking these pairwise gives

again nine possible states for each unit square. However, since two of the three states in

each coordinate indicate a unit square being covered by some strip, we must disallow four of

these. Thus, we see that URSAs correspond to a five-vertex model of statistical mechanics,

rather than an eight-vertex model that we saw for ROSAs. (Figure 1.6 displays the colors

used (and not used) in this model, and Figure 1.7 shows such a coloring for a given URSA.)

Our approach, therefore, for determining the number U(m,n) of such Un-Restricted

Strip Arrangements, or URSAs, on an m × n chessboard, will be very similar to that of

Chapter 2. We first determine generating functions Um(x) =
∑

n≥0 U(m,n)xn for small

fixed values of m. We then adapt the transfer matrix methods of Chapter 2 – that is, we

show that the philosophy of Equation 1.2 applies – to obtain the generating function Um(x)

for any m similar to that of Theorem 1.3:

Theorem 1.5 (Theorem 3.12, p. 52). With w̃m(0) = 1√
5

[(
1+
√

5
2

)2m+1
−
(

1−
√

5
2

)2m+1
]

,

the generating function Um(x) =
∑

n≥0 U(m,n)xn for which the coefficient of xn is the

number U(m,n) of URSAs on an m× n chessboard is given by

Um(x) =

(
1

w̃m(0)

)
e0 · [(I3m − xD̃mÃm)−1 · D̃m] · (e0 + · · ·+ e3m−1)t

We then use Theorem 1.5 to compute Um(x) for certain fixed values of m.
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Finally, in Chapter 4, we return to restricted strip arrangements, as we consider the

number of ROSAs on a square chessboard of side length L. While it is very natural to

consider arrangements on such chessboards, enumerating them proves to be elusive in many

cases. Here, we follow a general idea from Larsen’s result on the Problem of Kings [9]. We

begin by renormalizing, or rescaling the chessboard by dividing it into an N ×N template

of certain square cells of side length s (so that L = Ns). We characterize these cells as

either H-cells or V -cells based on whether the cell can be crossed by a horizontal strip or a

vertical strip respectively. This allows us to treat the enumeration of strips macroscopically

– that is, in groups of rows, rather than each row individually. Specifically, for each row of

a template, we determine

Theorem 1.6 (Theorem 4.1, p. 60). If a row of a template of a ROSA contains a number

A of H-cells and a number B of V -cells, then the number of ways to place horizontal strips

that lie within this row of cells in the template is given by

[
1 +

(
Ns+ 1

2

)]s
B = 0

[
s+

∑(
ais+ 1

2

)
+

(
s

2

)
[3N +A− 2(a0 + ak + 1)]

]s
B 6= 0

where k is the number of contiguous groups of V -cells in the row, and a0 and ak denote the

lengths of the zeroth and k-th contiguous group of H-cells.

As the number of strip arrangements grows quite rapidly, we then resolve to estimate

not T (L,L) directly, but rather its natural logarithm; this has the added benefit of allowing

us to use techniques of convex analysis. Unfortunately, we determine that the expression

of Theorem 1.6 is not logarithmically concave everywhere, so we may not apply Jensen’s

Inequality directly, but we are able to develop a modification of Jensen’s Inequality:

12



Theorem 1.7 (Theorem 4.11, p. 69). Let f(x) be convex on (0, I) and concave on (I,M).

Let x1, . . . , xP ∈ [0, I), and let xP+1, . . . , xN ∈ [I,M ]. Then there exists z ∈ [0, N) with

f(x1) + · · ·+ f(xN ) ≤ zf(0) + (N − z)f
(
x1 + · · ·+ xN

N − z

)

Refining this result with techniques of differential calculus (and algebraic geometry), we

develop upper and lower bounds for log T (L,L), and thus conclude with the estimate

Theorem 1.8 (Theorem 4.38, p. 92). For all sufficiently large L,

log T (L,L) = 4L logL− 2L log 8 +O(L2/3)

13



7̃ = (2̃, 0̃)

before horizontal

under vertical

8̃ = (2̃, 1̃)

within horizontal

under vertical

9̃ = (2̃, 2̃)

after horizontal

under vertical

4̃ = (1̃, 0̃)

before horizontal

within vertical

5̃ = (1̃, 1̃)

within horizontal

within vertical

6̃ = (1̃, 2̃)

after horizontal

within vertical

1̃ = (0̃, 0̃)

before horizontal

above vertical

2̃ = (0̃, 1̃)

within horizontal

above vertical

3̃ = (0̃, 2̃)

after horizontal

above vertical

Figure 1.6: Translation of an URSA into pairs of 3-colorings of unit squares of a chessboard

with five allowed colors and four disallowed colors.

2̃ 3̃ 3̃ 3̃ 1̃ 4̃ 2̃ 3̃

1̃ 2̃ 2̃ 3̃ 3̃ 7̃ 4̃ 1̃

4̃ 1̃ 1̃ 1̃ 4̃ 7̃ 2̃ 3̃

7̃ 1̃ 4̃ 1̃ 7̃ 7̃ 2̃ 2̃

7̃ 1̃ 1̃ 1̃ 7̃ 7̃ 1̃ 1̃

7̃ 2̃ 3̃ 3̃ 3̃ 4̃ 4̃ 7̃

7̃ 4̃ 1̃ 2̃ 1̃ 7̃ 7̃ 1̃

7̃ 2̃ 3̃ 3̃ 3̃ 3̃ 7̃ 1̃

Figure 1.7: The five-vertex model that corresponds to the URSA given in Figure 1.1(a).
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CHAPTER 2

RESTRICTED STRIP ARRANGEMENTS OF FIXED WIDTH

In this chapter, we investigate the number T (m,n) of ROSAs on a m × n chessboard,

where m is some fixed positive integer, and n is allowed to vary among all the positive in-

tegers. After computing some exact formulas for small m using elementary combinatorics,

we turn to the algebraic method of transfer matrices to find an abstract matrix-theoretic

formula for the corresponding generating function Tm(x) =
∑

n≥0 T (m,n)xn. for any given

value of m. We put this abstract formula into practice to find concrete generating functions

for more values of m, and from these generating funtions we thereby determine exact for-

mulas for T (m,n) for all m = 1, . . . , 6 and all n ≥ 0. These exact formulas that we compute

will provide some conjectures for an asymptotic formula for T (m,n) as n → ∞; we will

conclude the chapter by proving these conjectures.
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2.1 Elementary Results

We begin with an elementary counting of the number of ROSAs on a 1× n chessboard

for any positive integer n:

Theorem 2.1. T (1, n) = n2n + 1.

Proof. If the chessboard contains no horizontal tiles, then there are 2n possible ways to tile

the rectangle: each column is either filled with a vertical tile, or is empty. Otherwise, the

row contains a horizontal tile of length j; there are n+ 1− j ways to place this tile in the

row, and the remainder of the row can be tiled in 2n−j ways (see Figure 2.1). Thus,

T (1, n) = 2n + n2n−1 + (n− 1)2n−2 + · · ·+ (2)21 + 1 = 2n +
n−1∑
k=0

(k + 1)2k (2.2)

Now note that (at least formally) we have

1 + 2x+ 3x2 + · · ·+ nxn−1 =
d

dx
(1 + x+ x2 + · · ·+ xn)

=
d

dx

(
xn+1 − 1

x− 1

)
=

nxn+1 − (n+ 1)xn + 1

(x− 1)2
(2.3)

Figure 2.1: An example for Theorem 2.1. There are 6 = 8+1−3 ways to place a horizontal

strip of length 3 on a 1 × 8 chessboard, and there are two possibilities for each of the

remaining 5 = 8− 3 squares. Thus, there are 192 = (8 + 1− 3) · 2(8−3) ROSAs on a 1× 8

chessboard that contain a horizontal strip of length 3. The total number of ROSAs on a

1× 8 chessboard is therefore 28 + 8 · 27 + 7 · 26 + · · ·+ 2 · 21 + 1 = 2049 = 8 · 28 + 1.
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Figure 2.2: An example of the correspondence between pairs of ROSAs on 1×n boards and

a single ROSA on a 2 × n board. Note how the two vertical strips in the second-to-last

column of each 1 × n ROSA are transformed into a single vertical strip of length 2 in the

2× n ROSA.

for all x 6= 1. Taking x = 2 in Equation 2.3∗, we may conclusively rewrite Equation 2.2 as

T (1, n) = 2n + n2n+1 − (n+ 1)2n + 1 = (2n+ 1− n− 1)2n + 1 = n2n + 1 �

Upon experimentally counting the number of ROSAs on 2 × n chessboards, we find a

direct relation between T (2, n) and T (1, n):

Theorem 2.4. T (2, n) = [T (1, n)]2 = [n2n + 1]2 = n24n + (2n)2n + 1.

This follows at once from the fact that there is a bijective map between ordered pairs (S, T )

of ROSAs on the 1×n rectangle to ROSAs on the 2×n rectangle such that S is a tiling of

the first row, T is a tiling of the second row, and, in any column that contains two vertical

tiles, these two tiles are replaced with a single vertical tile of height 2 (see Figure 2.2).

∗The technique of Equation 2.3 is inspired by the methods of Wilf [19]. The result can also be arrived

at discretely, by rewriting the sum as a sum of geometric sums:

2n−1 + 2n−1 + . . . + 2n−1 + 2n−1 = n2n−1

+ 2n−2 + . . . + 2n−2 + 2n−2 = (n− 1)2n−2

+
.. . +

. . . +
... =

...

+ 21 + 21 = 2 · 21

+ 20 = 1 · 20

(2n − 2n−1) + (2n − 2n−2) + . . . + (2n − 21) + (2n − 20) = n2n − (2n − 1) = (n− 1)2n + 1

17



When the numberm of rows of the ambient chessboard is 3 or greater, the analogous map

from ordered m-tuples of ROSAs of the 1× n rectangle to strip arrangements of the m× n

rectangle may introduce “gaps” between vertically oriented tiles (see Figure 2.3). Indeed,

the range of this analogous map is no longer contained in the set of ROSAs; however, the

inverse map that takes an ROSA of an m × n chessboard, breaks each vertical strip of

length k into k individual vertical strips of unit length, and returns the corresponding m-

tuple of 1× n ROSAs is well-defined, and is an injection. Hence, we have an upper bound

T (m,n) ≤ [T (1, n)]m = [n2n + 1]m for m ≤ n, or log T (m,n) = O(mn log 2 + m log n) as

m,n→∞ (where log denotes the natural logarithm).

We note, however, that we can immediately do better than this super-exponential esti-

mate. Indeed, if we disregard the fact that no two strips can overlap, we can naively pick

any two distinct boundaries to determine a single non-empty strip, or choose not to place

a strip, in each row and column, so that

T (m,n) ≤
(

1 +

(
m+ 1

2

))n(
1 +

(
n+ 1

2

))m
(2.5)

or log T (m,n) = O(2m log n+2n logm). All of this gives a starting point for an asymptotic

analysis of ROSAs, a subject to which we will return many times in the sequel.

Figure 2.3: The left side of the diagram shows three proper ROSAs on 1 × 3 chessboard.

Attempting to “fuse” these into a single strip arrangement on a 3× 3 chessboard, we obtain

two non-adjacent vertical strips in the middle column, so the result is in fact not a ROSA.
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2.2 The Transfer Matrix Method

In any event, it would appear that determining T (m,n) exactly for m ≥ 3 using the

previous methods involves rather delicate computations. There is, however, another general

method that is often used for enumeration problems on chessboards such as ours. Looking

at various strip arrangements and reading them from left to right, we notice that, in each

row, each unit square must be in one of three states:

• State 0: A strip has not yet been seen in this row. Alternatively, the unit square is to

the left of the horizontal strip in this row, or there is no horizontal strip in this row.

• State 1: The unit square is covered by a horizontal strip.

• State 2: A strip has already been seen in this row. Alternatively, the unit square is

to the right of the horizontal strip in this row.

Furthermore, the states in any given row must occur in a proper sequence:

• A unit square in state 0 can be immediately followed by either a square in state 0 or

a square in state 1 – we cannot instantaneously transition from not yet having seen a

horizontal strip to having already seen the strip.

• A unit square in state 1 can be immediately followed by either a square in state 1 or

a square in state 2 – the row of the ROSA cannot “forget” that a horizontal strip has

already been seen.

• A unit square in state 2 can only be immediately followed by a square in state 2 – by

transitivity, a square to the right of a square to the right of a horizontal strip must

be to the right of the horizontal strip.
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We may therefore construct a directed graph Gm whose vertices are {0, 1, 2}m (with one

coordinate for each row) and whose edges are defined by the above rules. It then follows

that the problem of counting the number of combinatorial objects (in this case, ROSAs

on a chessboard with m rows) is equivalent to the problem of enumerating certain graph-

theoretic walks on Gm (in this case, those walks that begin at those vertices in {0, 1}m,

as no ROSA can have a row beginning in state 2), and the latter is determined by taking

powers of the adjacency matrix of Gm – this is the method of transfer matrices. (Baxter [3]

explains the transfer matrix method from the point of view of statistical mechanics, whereas

Stanley [15] offers a perspective from the realm of pure mathematics, or combinatorics.)

We begin by constructing the unweighted adjacency matrix Am for Gm; to this end, we

first note that the unweighted adjacency matrix for the digraph G1 that models ROSAs

with a single row is given by

A1 =


1 1 0

0 1 1

0 0 1

 (2.6)

where the states are ordered 0, 1, 2 as the columns of A1 are read from left to right, the

rows are read from top to bottom, and the edges of G1 are directed according to the rules

given previously.

We then notice that each row of a ROSA can progress according to the given rules

independently of the other rows. This suggests that the digraph Gm for ROSAs with m

rows can be constructed by taking the set of vertices to be the m-tuples of states (that is,

{0, 1, 2}m), and allowing an edge in Gm from a vertex u = (u1, . . . , um) to another vertex

v = (v1, . . . , vm) if and only if there are edges in G1 from ui to vi for each i = 1, . . . ,m. This

construction for Gm is known as the m-th graph-theoretic Kronecker power of G1, or the

graph-theoretic Kronecker product of G1 taken with itself m times. It thus follows that the

unweighted adjacency matrix Am for Gm is given by the m-th matrix-theoretic Kronecker
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(or tensor) power of A1, or the matrix-theoretic Kronecker (tensor) product of A1 taken

with itself m times. (More remarks about both the graph-theoretic and the matrix-theoretic

Kronecker products, and their connection, can be found in the work of Cvetković, Doob, &

Sachs [7].) For example, for the digraph G2 that models ROSAs on chessboards with two

rows, its unweighted adjacency matrix A2 is given by

A2 = A1 ⊗A1 =


A1 A1 0

0 A1 A1

0 0 A1

 =



1 1 0 1 1 0 0 0 0

0 1 1 0 1 1 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 0 1 1

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1



(2.7)

Next, we recall that each vertex of the digraph Gm should be thought of as an encoding

of a column of the ROSA. We wish to consider the placement of vertical strips in these

columns, and therefore we weight each vertex u with the number w(u) of ways to place a

vertical strip (including the empty strip) in the column encoded by u – or, equivalently,

we weight each edge from u to v by wm(u). The weight of the vertex u = (u1, . . . , um) is

computed by the formula

wm(u) = 1 +
k∑
i=1

(
βi − βi−1

2

)
(2.8)

where β0 = 0, βk = m + 1, and β1, . . . , βk−1 denote the indices of each “1” in u in order

– that is, uβi = 1 for all 1 ≤ i < k ≤ m, βi < βj if i < j, and uα 6= 1 if α 6= βi for

some i = 1, . . . , k − 1. From these weights, we are able to construct a diagonal matrix

Dm = (di,j)0≤i,j≤3m−1 for which di,j = 0 if i 6= j, and di,i = wm(i), where we identify the

integer i = 0, 1, . . . , 3m−1 with the m-tuple (u1, . . . , um) ∈ {0, 1, 2}m given by the (unique)

ternary representation i = u1 + 3u2 + 32u3 + · · ·+ 3m−1um.
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We pause now to make some general remarks about generating functions obtained from

transfer matrices. Let Γ be any (weighted) digraph, and let V be its set of vertices. If

W = (wu,v)u,v∈V is the (weighted) adjacency matrix of Γ according to some total ordering

on V , then, for any u, v ∈ V , the number of length ` walks on Γ from u to v is the (u, v)-

entry of the product W `. It therefore follows that, for any indeterminate x, if Iα denotes

the α× α identity matrix, then the power series

I|V | +Wx+W 2x2 + · · · = (I|V | −Wx)−1 (2.9)

gives a matrix whose (u, v)-entry is a generating function such that the coefficient of x` is the

number of walks on Γ from u to v of length `. (These results can be found in Stanley [15].)

Thus, the generating function Fv for which the coefficient of x` is the number of walks

on Γ of length ` that start at v and end at any other vertex of Γ is the sum of all the entries

in the matrix (I|V | −Wx)−1 in the row corresponding to v – or, as a formula,

Fv(x) = ev · (I|V | −Wx)−1 ·

(∑
u∈V

eu

)t
(2.10)

where eu denotes the row basis vector corresponding to u ∈ V in the lattice Z|V | (or in the

group algebra Z[V ]), and (·)t denotes the transpose operator that converts row vectors into

column vectors and vice versa.

The foregoing matrix-theoretic discussion leads to an alternative way to compute Fv:

Lemma 2.11. For any (weighted) graph Γ, let V be its set of vertices, and let E be its

set of edges. For any vertex v ∈ V , let Fv(x) denote the generating function for which the

coefficient of xn is the number of walks on Γ that begin at v. Then, if W = (wα,β)α,β∈E

denotes the (weighted) adjacency matrix of Γ,

Fv(x) = 1 +
∑
v′∈V

(wv,v′x)Fv′(x)
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There is a nice intuition for this lemma: a walk in Γ of length ` beginning at v is determined

by taking some first step from v to any other vertex w, and then constructing a walk from

w of length `− 1. For a proof by formal calculation, if we write σ =
∑
u∈V

eu, then one has,

by Equations 2.9 and 2.10,

Fv(x) = ev · (I|V | −Wx)−1 · σt

= ev ·
(
I|V | +Wx+W 2x2 + . . .

)
· σt

= ev · I|V | · σt + ev ·
(
Wx+W 2x2 +W 3x3 + . . .

)
· σt

= 1 + ev ·Wx ·
(
I|V | +Wx+W 2x2 + . . .

)
· σt

= 1 +
∑
v′∈V

(wv,v′x)
[
ev′ · (I −Wx)−1 · σt

]
= 1 +

∑
v′∈V

(wv,v′x)Fv′(x)

In our situation, each edge of Gm that flows out of a vertex v is equally weighted by

wm(v), and therefore we can rewrite the result of Lemma 2.11 as

Fv(x) = 1 + xwm(v)
∑

(v,v′)∈Em

Fv′(x) (2.12)

where Em is the set of directed edges of Gm. If we set v = 0 as the origin, whose nearest

neighbors must have each of its coordinates equal to either 0 or 1, we obtain

F0(x) = 1 + xwm(0)
∑

v′∈{0,1}m
Fv′(x) = 1 + x

(
1 +

(
m+ 1

2

)) ∑
v′∈{0,1}m

Fv′(x)

The expression
∑

u∈{0,1}m Fu(x) is the generating function that enumerates all walks that

begin at any point in the unit square {0, 1}m. But we remarked earlier that these constitute

all of the possible starting points for walks on Gm that correspond to ROSAs. Therefore,

Corollary 2.13. The generating function Tm(x) for the sequence {T (m,n)}n≥0 satisfies

F0(x) = 1 + x

((
m+ 1

2

)
+ 1

)
Tm(x)

where F0(x) is the generating function for the sequence whose n-th term is the number of

ROSAs on an m× n chessboard with no horizontal tiles crossing the first column.
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The characterization of F0(x) in Corollary 2.13 stems from the fact that the origin 0

encodes the only starting column (i.e., the only starting vertex in {0, 1}m) that does not

have a horizontal strip crossing it (i.e., has no 1’s among its coordinates). In addition,

Corollary 2.13, like its predecessor Lemma 2.11, admits an intuitive explanation: for n > 0,

the coefficient of xn in F0(x) is the number of ROSAs on an m×n chessboard that have no

horizontal strips crossing the left-most row, whereas the coefficient of xn in the power series

1 + x(1 +
(
m+1

2

)
)Tm(x) is equal to the number of ways to place a vertical strip anywhere in

an empty column times the number of ROSAs on an m× (n− 1) chessboard.

To apply the result of Corollary 2.13, we need to compute the generating function F0(x)

that enumerates ROSAs with m rows with no horizontal strips crossing the first (left-most)

column. More generally, we would like to compute the generating function Fv(x) for ROSAs

starting with any column v. Viewing Gm with weighted vertices, one way to do so is to

start by evaluating the weight of v (using the weight matrix Dm), then transferring to a

new column (using right-multiplication by the adjacency matrix Am), taking the weight

of this new column (using right-multiplication by Dm), and so on for any desired length.

Alternatively, viewing Gm with weighted edges, we can use the product Dm ·Am as a single

weighted adjacency matrix forGm to account for the transitions between successive columns.

However, transfer matrices, by their very nature, record transitions between vertices on the

digraph – or, in our case, between columns of the ROSA. Thus, a ROSA with n columns

corresponds to n− 1 transitions, which is captured by the (n− 1)-fold multiplication of the

transfer matrix, but we still need to account for the weight of the last column. This can be

done by taking one final transition from the last column to itself, and right-multiplying by

the diagonal matrix Dm captures this phenomenon perfectly. †

†One could also take the matrix Am ·Dm and left-multiply by Dm, but this proves to be not as compatible

with Theorem 2.11.
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Therefore, the matrix-valued power series P(x) whose (u, v) entry is the generating func-

tion enumerating ROSAs beginning with some column u and ending with another column

v is given by

P(x) = I3m + xDm + x2Dm ·Am ·Dm + x3(Dm ·Am)2 ·Dm

+ · · ·+ xn(Dm ·Am)n−1 ·Dm + . . .

= I3m + (I3m − xDm ·Am)−1 · (xDm)

In particular, F0(x) is precisely the sum of the entries of the zeroth row of P(x), or,

following the methods of Lemma 2.11 (and with σ denoting the sum of all the unit vectors

in the standard basis on Z3m),

F0(x) = e0 · [I3m + (I3m − xDm ·Am)−1 · (xDm)] · σt

= e0 · I3m · σt + e0 · [(I3m − xDm ·Am)−1 · (xDm)] · σt

= 1 + x
{
e0 · [(I3m − xDm ·Am)−1 ·Dm] · σt

}
(2.14)

After applying Corollary 2.13, we conclude that

Theorem 2.15. The generating function Tm(x) of the sequence {T (m,n)}n≥0 is given by

Tm(x) =

(
1(

m+1
2

)
+ 1

)
e0 · [(I3m − xDmAm)−1 ·Dm] · (e0 + · · ·+ e3m−1)t

In other words, Tm(x) is the sum of all of the entries in the zeroth row of the matrix

(I3m − xDmAm)−1 ·Dm divided by the constant 1 +
(
m+1

2

)
.
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2.3 Examples of the Transfer Matrix Method

Theorem 2.15 now gives us a procedure to compute generating functions for the number

of ROSAs on m × n chessboards for any fixed number of rows m, from which we aim to

compute exact formulas. Before we obtain new results in this direction, however, let us

compare this with our previous results.

First, we take the case m = 1. We have already determined that the unweighted

adjacency matrix A1 for the corresponding digraph G1 is given as in Equation 2.6. For the

weights, we note that there is only one possible way to add a vertical strip to a column in

state 1 (by adding nothing, since the column is already completely covered by a horizontal

strip), whereas there are two possible ways to add a vertical strip to the other columns

(either we add a strip or we do not). Therefore, wm(1) = 1 and wm(0) = wm(2) = 2, so the

weight matrix is given by

D1 =


2 0 0

0 1 0

0 0 2


Thus, we can easily compute by hand that

(I3 − xD1 ·A1)−1 ·D1 =


1− 2x −2x 0

0 1− x −x

0 0 1− 2x


−1

·


2 0 0

0 1 0

0 0 2



=


1

1−2x
2x

(1−x)(1−2x)
2x2

(1−x)(1−2x)2

0 1
1−x

x
(1−x)(1−2x)

0 0 1
1−2x

 ·


2 0 0

0 1 0

0 0 2



=


2

1−2x
2x

(1−x)(1−2x)
4x2

(1−x)(1−2x)2

0 1
1−x

2x
(1−x)(1−2x)

0 0 2
1−2x


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By Theorem 2.15, the generating function that enumerates the ROSAs on a chessboard

with one row is given by

T1(x) =
1

2

(
2

1− 2x
+

2x

(1− x)(1− 2x)
+

4x2

(1− x)(1− 2x)2

)
=

1

1− 2x
+

(
1

1− 2x
− 1

1− x

)
+

(
2

1− x
− 3

1− 2x
+

1

(1− 2x)2

)
=

1

1− x
− 1

1− 2x
+

1

(1− 2x)2
(2.16)

To recover the coefficient T (1, n) of xn in the power series for T1(x), we recall some facts

about generating functions from Wilf [19]. First, for any integer k ≥ 0, the coefficient of yn

in the power series for 1/(1− y)k+1 is given by

[yn]

{
1

(1− y)k+1

}
=

(
n+ k

k

)

Secondly, making the substitution y = Cx in the above and using a fundamental property

of the coefficient extraction operator, we deduce that

[xn]

{
1

(1− Cx)k+1

}
=
[( y
C

)n]{ 1

(1− y)k+1

}
= Cn[yn]

{
1

(1− y)k+1

}
= Cn

(
n+ k

k

)
(2.17)

Applying this to the partial fraction decomposition of T1(x) given in Equation 2.16, we

conclude that, for all positive integers n,

T (1, n) =

(
n

0

)
− 2n

(
n

0

)
+ 2n

(
n+ 1

1

)
= 1 + 2n(−1 + (n+ 1)) = 1 + n2n

which does indeed agree with the result of Theorem 2.1.
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Let us also check the formula for the case m = 2. By the Kronecker product structure

of the digraph G2 = G1 ⊗G1, its unweighted adjacency matrix is given by A2 = A1 ⊗ A1,

and is explicitly written as a matrix in Equation 2.7. By Equation 2.8, the weight matrix

is given by

D2 =



4 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 4


We may therefore compute the matrix I9 − xD2 ·A2 as

I9−xD2·A2 =



1− 4x −4x 0 −4x −4x 0 0 0 0

0 1− 2x −2x 0 −2x −2x 0 0 0

0 0 1− 4x 0 0 −4x 0 0 0

0 0 0 1− 2x −2x 0 −2x −2x 0

0 0 0 0 1− x −x 0 −x −x

0 0 0 0 0 1− 2x 0 0 −2x

0 0 0 0 0 0 1− 4x −4x 0

0 0 0 0 0 0 0 1− 2x −2x

0 0 0 0 0 0 0 0 1− 4x


By Theorem 2.15, the generating function T2(x) whose coefficients are the numbers

T (2, n) of ROSAs on a 2×n chessboard is given by the sum of the entries in the zeroth row

of (I9 − xD2 · A2)−1 ·D2. We can either compute the matrix inverse explicitly, or we can

make use of the following formula which comes from the cofactor matrix:
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Theorem 2.18 (Stanley [15], Theorem 4.7.2). Let W denote the (weighted) adjacency

matrix of the (weighted) digraph Γ with vertex set {v1, . . . , vk}. Then, for any two vertices

vi, vj of Γ, the generating function Pv,v′(x) for which the coefficient of x` is the number of

paths in Γ of length ` from v to v′ is given by

Pv,v′(x) =
(−1)i+j det(Ik − xW ; j, i)

det(Ik − xW )

where (B;α, β) denotes the submatrix of the matrix B obtained by deleting the α-th row and

the β-th column.

A direct corollary of Theorem 2.18 and Theorem 2.15 is

Corollary 2.19. The generating function Tm(x) for which the coefficient of xn is the num-

ber of ROSAs on an m× n chessboard is given by

Tm(x) =
3m−1∑
j=0

(−1)jwm(j) det(I3m − xDm ·Am; j, 0)

wm(0) det(I3m − xDm ·Am)

This result is all the more significant if we recall that the transfer matrix Dm ·Am is upper

triangular, for we can easily compute

det(I3m − xDm ·Am) = (1− wm(0)x)(1− wm(1)x) . . . (1− wm(3m − 1)x)

In addition, the submatrix (I3m −xDm ·Am; j, 0) is diagonal below the deleted row, so that

these diagonal elements in a numerator cancel with corresponding elements in a denomina-

tor. We can therefore rewrite the result of Corollary 2.19 as

Tm(x) =
3m−1∑
j=0

(−1)jwm(j) det[I3m − xDm ·Am : (0, . . . , j − 1), (1, . . . , j)]

wm(0)(1− wm(0)x) . . . (1− wm(j)x)

where det[M : (α1, . . . , αz), (β1, . . . , βz)] denotes the submatrix of the matrix M whose rows

are the rows of M indexed by the tuple (α1, . . . , αz), and whose columns are the columns

of M indexed by the tuple (β1, . . . , βz) (and, by convention, the determinant of the empty

matrix [M, ∅, ∅] is 1).
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With m = 2, one has

T2(x) =
1

1− 4x
+

2x

(1− 4x)(1− 2x)
+

8x2

(1− 4x)2(1− 2x)
+

2x

(1− 4x)(1− 2x)

+
x(1 + 2x)

(1− 4x)(1− 2x)(1− x)
+

2x2(3− 4x− 8x2)

(1− 4x)2(1− 2x)2(1− x)

+
8x2

(1− 4x)2(1− 2x)
+

2x2(3− 4x− 8x2)

(1− 4x)2(1− 2x)2(1− x)

+
4x2(1 + 8x− 20x2 − 16x3)

(1− 4x)3(1− 2x)2(1− x)

=
1

1− 4x
− 2

(
1

1− 2x
− 1

1− 4x

)
+ 2

(
2

1− 2x
− 3

1− 4x
+

1

(1− 4x)2

)
+

(
1

1− x
− 2

1− 2x
+

1

1− 4x

)
− 2

(
2

1− x
− 5

1− 2x
+

1

(1− 2x)2
+

3

1− 4x
− 1

(1− 4x)2

)
+

(
4

1− x
− 12

1− 2x
+

4

(1− 2x)2
+

9

1− 4x
− 7

(1− 4x)2
+

2

(1− 4x)3

)
=

1

1− x
− 2

1− 2x
+

2

(1− 2x)2
+

1

1− 4x
− 3

(1− 4x)2
+

2

(1− 4x)3

It therefore follows from Equation 2.17 that

T (2, n) =

(
n

0

)
+ 2n

(
−2

(
n

0

)
+ 2

(
n+ 1

1

))
+ 4n

((
n

0

)
− 3

(
n+ 1

1

)
+ 2

(
n+ 2

2

))
= 1 + 2n(2n) + 4n(n2)

which again agrees with our previous result of Theorem 2.4.

Exact formulas for T (m,n) for increasing values of m can be found using the same

method as above, only performing exponentially more computations; we list several of

these results in Appendix A.
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2.4 An Asymptotic Formula

Naturally, after computing these formulas, we find that some patterns begin to emerge.

For example, the dominant term in T (m,n) – i.e., the coefficient of xn in Tm(x) – appears

to be of the form C(m)nP (m)(Λ(m))n for some functions C,P,Λ of m. This corresponds

exactly to an observation of Flajolet and Sedgewick [8] that, for any rational generating

function f(x) with poles ρ1, . . . , ρk that is analytic at x = 0, the coefficient of xn in f(x)

must be of the form

[xn]{f(x)} =

k∑
i=1

Πi(n)(1/ρi)
n (2.20)

for some polynomials Π1, . . . ,Πk. Stanley [15] tells us that any generating function that

arises from the method of transfer matrices must be rational, and thus f(x) = Tm(x)

must satisfy Equation 2.20 for all m.‡ Furthermore, the dominant term in Equation 2.20

corresponds to a reciprocal of a pole of smallest (complex) magnitude – by construction,

such a pole is itself a reciprocal of an eigenvalue of largest magnitude of the corresponding

transfer matrix. In our situation, the transfer matrix Tm = Dm · Am has a unique largest

eigenvalue, which is the weight 1 +
(
m+1

2

)
of a column of a ROSA that is not crossed by any

horizontal strip. Therefore,

T (m,n) ∼ C(m)nP (m)

(
1 +

(
m+ 1

2

))n
We also know from Inequality 2.5 that the degree of the polynomial factor attached to

this largest exponential term has degree at most 2m – that is, P (m) ≤ 2m, using the above

notation (for 1+
(
n
2

)
is a polynomial of degree 2, so its m-th power has degree 2m). It seems,

however, from the exact formulas in Appendix A that this degree is exactly m. Indeed, if

‡Indeed, Stanley goes further, showing that Flajolet and Sedgewick’s necessary condition for a generating

function to be rational is also sufficient – that is, any generating function f(x) that satisfies Equation 2.20

for all n is a rational function (that is analytic at x = 0).
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we restrict the set of ROSAs to those arrangements that have exactly one horizontal strip

of unit length in each row and no more than one horizontal strip in each column, then, for

m ≤ n, we have the lower bound

T (m,n) ≥
(
n

m

)
m!

(
1 +

(
m+ 1

2

))n−m
m∏
j=1

[
1 +

(
j

2

)
+

(
m− j + 1

2

)] (2.21)

which stems from first choosing m of the n columns to contain a horizontal strip, then

choosing distinct rows for the horizontal strips in each of the chosen columns (this is akin

to selecting a placement of m non-attacking rooks on a m × m chessboard), and finally

determining the number of ways to place a vertical strip in each column – for the n −m

columns without any horizontal strip, there are wm(0) = 1+
(
m+1

2

)
possible placements of a

vertical strip, whereas, for each j = 1, . . . ,m, the column that contains a horizontal strip in

row j allows wm(3j) = 1+
(
j
2

)
+
(
m+1−j

2

)
possible placements of a vertical strip by Equation

2.8. From Inequality 2.21, we deduce that P (m) ≥ deg
(
n
m

)
= m.

In this same vein, we can refine our upper bound for P (m). Define a row signature of

a ROSA on an m × n chessboard as an m-tuple of pairs (a, x) with a ∈ {0, 1, . . . , n}, and

x ∈ {1, . . . , χ(a)}, where χ(a) is defined to be 1 if a = 0, and χ(a) = n + 1 − a if a > 0.

For each i = 1, . . . ,m, the first element of the i-th pair is meant to signify the length of the

horizontal strip in row i of the ROSA, while the second element is meant to indicate the

first column that is covered by that strip (provided that there is indeed a horizontal strip

in that row – or, equivalently, provided that the first element of the pair is non-zero). Each

ROSA, therefore, can be obtained by first choosing a row signature, and then by choosing

a placement of vertical strips that is compatible with the row signature. Hence, if V (ρ)

denotes the number of placements of vertical strips compatible with the row signature ρ,

T (m,n) =
∑
ρ

V (ρ) (2.22)

where the sum is taken over all row signatures ρ.
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To obtain an upper bound for V (ρ), we note that each horizontal strip obstructs the

placement of a vertical strip in any given column; therefore, the number of compatible

vertical strips increases as the number of columns crossed by a horizontal strip decreases.

For a given row signature ρ = ((a1, x1), . . . (am, xm)), the fewest number of columns that

must be crossed by a horizontal strip is µ = max{ai : i = 1, . . . ,m}, and this minimum is

attained when the corresponding largest strip acts as an umbrella for the others – see Figure

2.4. For those columns not crossed by a horizontal strip, the number of vertical strips that

can be placed in the column is equal to the largest weight wm(0) = 1 +
(
m+1

2

)
; for those

columns crossed by at least one horizontal strip (i.e., with at least one obstruction to the

placement of vertical strips), the number of compatible vertical strips is at most the next

highest weight wm(1) = 1 +
(
m
2

)
. It therefore follows that

V (ρ) ≤
(

1 +

(
m+ 1

2

))n−µ(
1 +

(
m

2

))µ
≤

(
1 +

(
m+ 1

2

))n−a1+···+am
m

(
1 +

(
m

2

))a1+···+am
m

(2.23)

where Inequality 2.23 arises from the fact that wm(0) > wm(1), and the fact that the average

of a set of values cannot exceed its maximum.

We see that this upper bound for V (ρ) does not depend fully on the row signature ρ of

a ROSA, but rather on the corresponding row prototype – that is, the m-tuple of integers

(a1, . . . , am) ∈ {0, . . . , n}m that records only the lengths of the horizontal strips of the

ROSA. One can easily see that the number |Sig(a1, . . . , an)| of row signatures corresponding

to a row prototype (a1, . . . , am) satisfies

|Sig(a1, . . . , an)| = χ(a1)χ(a2) . . . χ(am) ≤ [χ(max{ai : i = 1, . . . ,m})]m ≤ nm
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(a)

(b)

Figure 2.4: Figure 2.4(a) shows an arrangement of horizontal strips in which 11 of the 12

available columns intersect at least one horizontal strip. Using strips of the same length in

the same rows, Figure 2.4(b) shows an arrangement in which only 5 of the columns intersect

at least one horizontal strip. With these given strips, we cannot intersect fewer columns, as

the strip of length 5 must intersect 5 columns, and this minimum is achieved by “tucking”

the remaining strips under the longest strip. The latter strip arrangement, which has fewer

obstructed columns, allows a greater number of possible placements of vertical strips.

34



Therefore, if Φ is a function that takes row prototypes to integers, then a sum over row

signatures has as an upper bound a corresponding sum over row prototypes:

∑
((a1,x1),...,(am,xm))

Φ(a1, . . . , am) ≤
∑

(a1,...,am)

nmΦ(a1, . . . , am) =
n∑

a1=0

· · ·
n∑

am=0

nmΦ(a1, . . . , am)

Applying this to Equation 2.22 and Inequality 2.23 gives

T (m,n) ≤
n∑

a1=0

· · ·
n∑

am=0

nm
(

1 +

(
m+ 1

2

))n−a1+···+am
m

(
1 +

(
m

2

))a1+···+am
m

≤ nm
(

1 +

(
m+ 1

2

))n ∞∑
a1=0

· · ·
∞∑

am=0

[
1 +

(
m
2

)
1 +

(
m+1

2

)]a1+···+am
m

(2.24)

≤ nm
(

1 +

(
m+ 1

2

))n
∞∑
a=0

[
1 +

(
m
2

)
1 +

(
m+1

2

)] a
m


m

≤ nm
(

1 +

(
m+ 1

2

))n1−

[
1 +

(
m
2

)
1 +

(
m+1

2

)] 1
m


−m

(2.25)

It follows from Inequality 2.24 that P (m) ≤ m, as we removed any dependence on n

from the summation; therefore, with Inequality 2.21, we deduce that P (m) = m as observed.

However, continuing on to Inequality 2.25, we also obtain, again with Inequality 2.21, an

estimate for the coefficient C(m) of the summand of T (m,n) with largest exponential base

and largest polynomial degree in n:1−

[
1 +

(
m
2

)
1 +

(
m+1

2

)] 1
m


−m

≥ C(m)

≥
(

1 +

(
m+ 1

2

))−m
m∏
j=1

[
1 +

(
j

2

)
+

(
m− j + 1

2

)]
It remains only to determine the leading coefficient C(m) exactly. We have been con-

centrating in the preceding arguments on the placements of the horizontal strips. Let us

instead consider the placement of gaps between these horizontal strips. We formally define

an H-gap of size s to be a contiguous set of s columns on the chessboard that are not crossed

by any horizontal strip, and are such that the leftmost gridline of the gap is either the left-

most gridline of the chessboard or coincides with the rightmost boundary of some horizontal
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H-gap

H-zone

H-gap

H-zone

H-gap

H-zone

H-gap

Figure 2.5: An arrangement of horizontal strips with H-gaps and H-zones labeled. Intu-

itively, H-gaps appear after one horizontal strip ends and another horizontal strip begins;

any horizontal strips that intersect the same columns belong to the same H-zone. Note that

there are always H-gaps at either end of the chessboard, and that it is possible for an H-gap

to be of length 0.

strip, and similarly the rightmost gridline of the gap is either the rightmost gridline of the

chessboard or coincides with the leftmost boundary of some horizontal strip. Dually, we

also define an H-zone of size z to be a set of contiguous columns of the chessboard that are

covered by at least one horizontal strip, and are such that the leftmost gridline of the zone

is the rightmost gridline of some H-gap, and the rightmost gridline of the zone coincides

with the leftmost gridline of some other H-gap. We illustrate a configuration of H-gaps

and H-zones in Figure 2.5.

We now list some remarks about these newly-defined H-gaps and H-zones. Firstly, we

allow for H-gaps to have non-negative integer size of at most n, including those of size 0.

An H-gap of size 0 indicates that either there is a horizontal strip that touches one of the

ends of the chessboard, or there is a gridline of the chessboard that is touched by (at least)
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two distinct horizontal strips in distinct rows – one that touches from the left, and one from

the right – and is not crossed by any other horizontal strip. However, since there are no

horizontal strips of length 0, the H-zones must have strictly positive integer size.

Secondly, we note that there is at least one H-gap in any ROSA. A ROSA with exactly

one H-gap, however, is one without any horizontal strips (i.e., with no H-zones), so, in the

typical case, a ROSA will have at least two H-gaps (corresponding to the left and right

edges), and consequently at least one H-zone. As there are at most m horizontal strips in

a ROSA on a chessboard with m rows, there are at most m H-zones on such a ROSA, and

consequently at most m+ 1 H-gaps. In fact, since each H-zone is bounded by H-gaps, the

number of H-zones is always one less than the number of H-zones.

The great advantage of partitioning ROSAs into H-zones and H-gaps is that the place-

ment of strips (both horizontal and vertical) in the H-gaps and the placement of strips in

the H-zones are independent of one another. By definition, no horizontal strip can cross

between H-zones and H-gaps (indeed, horizontal strips are forbidden in H-gaps); and, as

both zones and gaps are collections of columns, no vertical strip can cross between them,

since in fact no vertical strip can cross between any two columns. It therefore follows that

T (m,n) = Z(0, 0)G(1,m) +
m+1∑
g=2

n∑
κ=g−1

Z(g − 1, κ)G(g, n− κ) (2.26)

where Z and G are defined as follows:

Z(z, κ) = the number of ways to place strips in a number z of H-zones of total size κ

G(g, λ) = the number of ways to place strips in a number g of H-gaps of total size λ

The sum of Equation 2.26 is indexed by the possible values κ of the number of columns in

the ROSA that coincide with at least one horizontal strip and the possible values g of the

number of H-gaps in the ROSA.
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As we observed, the computation of Z and G are independent of one another, so we

determine first the number G(g, λ) of ways to place strips in a number g of H-gaps with

total size λ. Note that there are by design no horizontal strips in the H-gaps, so that we

only have to worry about the placement of vertical strips in each column. As each column

is not obstructed by any horizontal strip, we have wm(0) = 1 +
(
m+1

2

)
possibilities for

each column among the gaps; therefore, G(g, λ) equals wm(0)λ times the number of ways

to arrange the columns into a collection of g gaps. But this number of ways of grouping

the columns is equivalent to the number of non-negative integer solutions y1, . . . , yg to the

equation y1 + · · · + yg = λ, and it is a well-known combinatorial result (see, for example,

Matoušek & Nešetřil [13]) that the number of such solutions to this equation is given by(
λ+g−1
g−1

)
. Hence, we have

G(g, λ) =

(
λ+ g − 1

g − 1

)
wm(0)λ =

(
λ+ g − 1

g − 1

)(
1 +

(
m+ 1

2

))λ
and so, with Z(0, 0) = 1, Equation 2.26 can be rewritten as

T (m,n) = wm(0)n +

m+1∑
g=2

n∑
κ=g−1

(
n− κ+ g − 1

g − 1

)
wm(0)n−κZ(g − 1, κ)

= wm(0)n

1 +

m∑
g∗=1

n−g∗∑
κ∗=0

(
n− κ∗

g∗

)
wm(0)−(κ∗+γ∗)Z(g∗, κ∗ + g∗)

 (2.27)

where g∗ = g−1 is the number of H-zones, and κ∗ = κ−g∗ is the number of other columns

that intersect a horizontal strip aside from the one required in each H-zone.

By a similar argument, using the fact that the number of ways to place a vertical strip in

a column obstructed by some horizontal strip is at most wm(1) = 1+
(
m
2

)
, we can determine

the upper bound

Z(g∗, κ)

wm(0)κ
≤

∑
x1+···+xg∗=κ

xi≥1

[
wm(1)

wm(0)

]κ
=

∑
x∗1+···+x∗

g∗=κ−g∗

x∗i≥0

[
wm(1)

wm(0)

]κ
=

(
κ− 1

g∗ − 1

)[
wm(1)

wm(0)

]κ
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We wish to determine the asymptotic behavior of T (m,n) as n→∞, so let us regard κ

as an expression that grows with n. If κ is sufficiently large compared to n – i.e., if k > nε

for some ε > 0 and all sufficiently large n – then, as wm(1) < wm(0),

Z(g∗, κ)

wm(0)κ
≤
(
κ− 1

g∗ − 1

)[
wm(1)

wm(0)

]κ
<

(
κ− 1

g∗ − 1

)[
wm(1)

wm(0)

]nε

→ 0

as n → ∞. Therefore, the exponentially dominant terms of Equation 2.27 correspond to

ROSAs for which κ, the number of columns overlapped by any horizontal strip, is small

enough so that κ < nε, or log κ < ε log n, for all ε > 0 and all sufficiently large n (i.e., in

Landau notation, log κ = o(log n)), or equivalently have log(κ)/ log(n)→ 0 as n→∞.

But log(κ)/ log(n)→ 0 also implies that

log
(
κ−1
g∗−1

)
log n

=

∑g∗−1
j=1 (log(κ− j)− log(j))

log n

<
log(κ− 1)

log n
+

log(κ− 2)

log n
+ · · ·+ log(κ− 1− g∗)

log n
→ 0

and therefore the number Z(g∗, κ) of strip placements in the H-zones does not contribute to

the degree of the corresponding polynomial factor of n. Hence, the degree of the polynomial

factor is equal to the degree of the polynomial factor
(
n−κ∗
g∗

)
of G(g∗ + 1, n − κ), which is

exactly g∗. We wish to consider those terms whose polynomial factor has highest degree,

and we know that this occurs when the number g∗ of H-zones of the ROSA is equal to the

number m of rows. In such ROSAs, we must have a horizontal strip in each and every row,

and further there is one and exactly one horizontal strip in each of the H-zones.

Therefore,

C(m) = lim
n→∞

T (m,n)

nmwm(0)n

= lim
n→∞

wm(0)n
∑n−m

κ∗=0

(
n−m
m

)
wm(0)−(κ∗+m)Z(m,κ∗ +m)

nmwm(0)n

=
1

m!

∞∑
κ∗=0

wm(0)−(κ∗+m)Z(m,κ∗ +m) (2.28)
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We need only evaluate Z(m,κ), the number of ways to arrange horizontal strips of total

length κ in a number m of H-zones. We remarked that each row must have a horizontal

strip; for any j = 1, . . . ,m, let xj ≥ 1 denote the length of the horizontal strip in row j (as

the rows are indexed from top to bottom). The number of the columns in the corresponding

H-zone is exactly xj , and the placement of vertical strips in each such column has a single

obstruction in the j-th row, so, by Equation 2.8, there are wm(3j−1) = 1 +
(
j
2

)
+
(
m+1−j

2

)
possible ways to place a vertical strip in each column of the H-zone. As the m zones can

be permuted without affecting the number of placements, we have

Z(m,κ) = m!
∑

x1+···+xm=κ
xi≥1


m∏
j=1

wm(3j−1)xj


= m!

 m∏
j=1

wm(3j−1)

 ∑
x∗1+···+x∗m=κ∗

x∗i≥0


m∏
j=1

wm(3j−1)x
∗
j


Therefore, continuing Equation 2.28,

C(m) =
1

m!

∞∑
κ∗=0

wm(0)−(κ∗+m)

m!

 m∏
j=1

wm(3j−1)

 ∑
x∗1+···+x∗m=κ∗

x∗i≥0


m∏
j=1

wm(3j−1)x
∗
j




=
∞∑

κ∗=0

wm(0)−m
m∏
j=1

wm(3j−1)

 ∑
x∗1+···+x∗m=κ∗

x∗i≥0

wm(0)−(x∗1+···+x∗m)
m∏
j=1

wm(3j−1)x
∗
j


=

∞∑
κ∗=0

 m∏
j=1

wm(3j−1)

wm(0)

 ∑
x∗1+···+x∗m=κ∗

x∗i≥0


m∏
j=1

[
wm(3j−1)

wm(0)

]x∗j
=

 m∏
j=1

wm(3j−1)

wm(0)

 m∏
j=1

∞∑
x∗j=0

[
wm(3j−1)

wm(0)

]x∗j

=

 m∏
j=1

wm(3j−1)

wm(0)

 m∏
j=1

(
1− wm(3j−1)

wm(0)

)−1

=
m∏
j=1

wm(3j−1)

wm(0)− wm(3j−1)
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and thus we have a closed form for the coefficient C(m). Carefully writing out the denom-

inators of the factors, we also have

wm(0)− wm(3j−1) =
1

2
{[2 +m(m+ 1)]− [2 + j(j − 1) + (m+ 1− j)(m− j)]}

=
1

2
{m(m+ 1)− j(j − 1)−m(m+ 1) +mj + jm− j(j − 1)}

= mj − j(j − 1) = j(m+ 1− j)

so that we may write§

C(m) =
m∏
j=1

1 +
(
j
2

)
+
(
m+1−j

2

)
j(m+ 1− j)

=
1

(m!)2

m∏
j=1

[
1 +

(
j

2

)
+

(
m+ 1− j

2

)]

and therefore deduce the asymptotic formula

Theorem 2.29.

T (m,n) ∼ 1

(m!)2

m∏
j=1

[
1 +

(
j

2

)
+

(
m+ 1− j

2

)]
nm
(

1 +

(
m+ 1

2

))n
as n→∞ for any fixed integer m.

2.5 From Transfer Matrices to the Asymptotic Formula

We conclude this chapter with some remarks about trying to understand the asymptotic

nature of the numbers T (m,n) of ROSAs from the algebraic point of view of the transfer

matrix method. When one studies a transfer matrix that is diagonalizable, one can deter-

mine the number of (closed) walks of length ` on the associated digraph as a sum of `-th

powers of the eigenvalues of the transfer matrix, and one can thereby enumerate a desired

class of combinatorial objects by considering an appropriate collection of such walks. In

our case of enumerating ROSAs on an m×n chessboard for a fixed value of m, our transfer

matrix Dm · Am is unfortunately not diagonalizable, as A1 is not diagonalizable (it is a

§Note that each factor in this expression for C(m) is symmetric in j and m+ 1− j. It follows that C(m)

is the square of a rational number when m is even, and is very nearly so when m is odd.
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Jordan block of size 3), and a Kronecker product is diagonalizable if and only if each factor

is diagonalizable (this follows from elementary properties of the Kronecker product, as given

in Steeb and Hardy [16]). In this case, the number of walks is given as a sum of products of

powers of the eigenvalues and polynomial factors, very much like the observation of Flajolet

and Sedgewick given in Equation 2.20; furthermore, the degree of the polynomial factor

attached to a power of an eigenvalue λ is equal to one less than the size of a Jordan block

corresponding to eigenvalue λ.

We compute the Jordan canonical form for the transfer matrices corresponding to the

cases m = 1 and m = 2:

D1 ·A1 =


2 2 0

0 1 1

0 0 2

 ∼


2 2 0

0 2 0

0 0 1



D2 ·A2 =



4 4 0 4 4 0 0 0 0

0 2 2 0 2 2 0 0 0

0 0 4 0 0 4 0 0 0

0 0 0 2 2 0 2 2 0

0 0 0 0 1 1 0 1 1

0 0 0 0 0 2 0 0 2

0 0 0 0 0 0 4 4 0

0 0 0 0 0 0 0 2 2

0 0 0 0 0 0 0 0 4



∼



4 1 0 0 0 0 0 0 0

0 4 1 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0

0 0 0 0 2 1 0 0 0

0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 2 1 0

0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 1


Notice that we have

K2 =

1 1

0 1

⊗
1 1

0 1

 =


1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

 ∼


1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1


since (K2 − I22)3 = 0, so that the Jordan canonical form of K2 contains a Jordan block of

size 3, and hence, as K2 is a 4× 4 matrix, must also have a Jordan block of size 1.
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It therefore seems – at least in these small cases – that the Jordan blocks corresponding

to the largest eigenvalue arise from Kronecker powers of the Jordan block of size 2. We

unfortunately see immediately that this cannot be the case, as the unweighted adjacency

matrix Am comes from Kronecker powers of the Jordan block A1 of size 3, and Jordan

blocks are irreducible in the sense that they cannot be represented as a direct sum of (i.e., a

block diagonal matrix whose diagonals are) Jordan blocks of smaller size. Nevertheless, this

ansatz accurately describes the behavior of the Jordan blocks with largest eigenvalue, and

has been verified by Maple [1] for the cases m = 3, 4, 5 using the code given in Appendix B

to construct the matrices. If this ansatz could be shown to hold true for general m, then

a result of Brualdi [5] with an inductive argument would show that the largest eigenvalue

wm(0) = 1 +
(
m+1

2

)
has a (unique) largest Jordan block of size m+ 1, so that the degree of

polynomial factor attached to wm(0) is exactly m. More research is required to understand

if and why this ansatz holds in general, and also to understand how to recover the coefficient

of this largest term (which we believe can be obtained by the similarity matrices).
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CHAPTER 3

UNRESTRICTED STRIP ARRANGEMENTS OF FIXED WIDTH

In the study of arrangements of 1 × k strips, we discussed that it is natural from the

perspective of statistical physics to consider the class of strip arrangements that restricts the

number of horizontal strips in each row and the number of vertical strips in each column

to at most one each – these are indeed the ROSAs that we have studying so intently.

It may, however, be more natural a priori to examine strip arrangements without these

restrictions. We term these arrangements simply Un-Restricted Strip Arrangements, or

URSAs, and we turn now to the problem of counting the number U(m,n) of URSAs on

an m × n chessboard. We will mainly follow the strategy and techniques of the previous

chapter – that is, we will first fix one dimension of the chessboard (namely the number m

of rows, just as in the previous chapter), and we will compute the corresponding generating

function Um(x) =
∑

n≥0 U(m,n)xn in the indeterminate x.

3.1 Elementary Results

Let us begin with a computation of the number U(1, n) of URSAs on a 1×n chessboard

for any integer n ≥ 0:

Theorem 3.1. The generating function U1(x) whose coefficient is the number U(1, n) of

URSAs on a 1× n chessboard is given by

U1(x) =
1− x

1− 4x+ 2x2
= 1 + 3x+ 10x2 + 34x3 + . . .
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Proof. By convention, we have U(1, 0) = 1. For n > 1, we consider the left-most unit

square of the chessboard. If it is not covered by a horizontal strip, then it is either empty

or contains a vertical strip, and neither of these possibilities interact with the remainder of

the chessboard. Thus, the rest of the arrangement is an URSA on a 1× (n− 1) chessboard,

and so we have 2U(1, n − 1) possible URSAs in this case. If the leftmost square is indeed

covered by a horizontal strip of some length ` ≥ 1, the remainder of the arrangement is an

URSA on a 1×(n−`) chessboard, so each length ` corresponds to U(1, n−`) arrangements.

Therefore, for n ≥ 1,

U(1, n) = 2U(1, n− 1) + U(1, n− 1) + U(1, n− 2) + · · ·+ U(1, 0) (3.2)

We form the generating function U1(x) by multiplying both sides of Equation 3.2 by xn

and summing over all n ≥ 1 (this is a common technique for obtaining a generating function

from a recurrence relation, and is well-illustrated in Wilf [19]). We recall (also from Wilf)

the fact that, given a generating function A(x) for a sequence {an}n≥0, the sequence of

partial sums {
∑

0≤n≤m an}m≥0 has generating function

AΣ(x) =
∞∑
m=0

(
m∑
n=0

an

)
xm =

 ∞∑
j=0

ajx
j

( ∞∑
k=0

xk

)
=
A(x)

1− x

Thus, from the recurrence relation of Equation 3.2, we deduce the functional equation

∞∑
n=1

U(1, n)xn =

∞∑
n=1

2U(1, n− 1)xn +

∞∑
n=1

(U(1, n− 1) + · · ·+ U(1, 0))xn

U1(x)− 1 = 2x U1(x) +
x U1(x)

1− x

1 = U1(x)

(
1− 2x− x

1− x

)
U1(x) =

1

1− 2x− x
1−x

=
1− x

1− 4x+ 2x2

which completes the proof of the theorem. �
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A couple of remarks are in order. First, we intended to mimic the style of the previous

chapter, where we first obtained the number T (1, n) of ROSAs on a 1 × n chessboard

by elementary means, but the technique here appears to be different. In fact, the same

technique could be applied to Theorem 2.1, and we would have obtained

T1(x)− 1 = 2x T1(x) +
x

(1− x)(1− 2x)

as a functional equation for the generating function T1(x) for the numbers {T (1, n)} of

ROSAs on a 1× n chessboard. It would follow from this that

T1(x) =
1

1− 2x
+

x

(1− x)(1− 2x)2
=

1

1− x
− 1

1− 2x
+

1

(1− 2x)2

just as we deduced in Equation 2.16. Secondly, applying a partial fraction decomposition

to U1(x), we can compute an exact formula for U(1, n) for all n ≥ 0 as

U(1, n) =
1

4

[
(2 +

√
2)n+1 + (2−

√
2)n+1

]
(3.3)

We recall now that we obtained the number T (2, n) of ROSAs on a 2 × n chessboard

in Theorem 2.4 by gluing pairs of ROSAs on 1 × n chessboards. Unfortunately, this phe-

nomenon does not hold in general for URSAs on 2× n chessboards, as not all pairs of unit

vertical strips need be glued together to form a vertical strip of length 2. However, let us

consider the placement of the left-most vertical strip of length 2 (which we note is the only

new strip for the 2× n chessboard). If there is such a long vertical strip located in column

j for j = 0, . . . , n − 1, we see that the strip arrangement to the left of this vertical strip

is indeed a pair of disconnected URSAs on 1 × j chessboards, as by hypothesis no strip

here crosses between the rows, and the arrangement to the right of the vertical strip can

be considered as an URSA on a 2× (n− 1− j) chessboard (see Figure 3.1). If there is no

vertical strip of length 2 anywhere in the URSA, then again no strip crosses between the

rows, so the arrangement is equivalent to a pair of disjoint URSAs on 1 × n chessboards.
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Therefore, for n ≥ 1,

U(2, n) = [U(1, n)]2 +
n−1∑
j=0

[U(1, j)]2U(2, n− 1− j) (3.4)

As in the proof of Theorem 3.1, we multiply both sides of Equation 3.4 by xn and sum

over all n ≥ 1 to obtain the functional equation

U2(x)− 1 =
∞∑
n=1

[U(1, n)]2 +
n−1∑
j=0

[U(1, j)]2U(2, n− 1− j)

xn

=

( ∞∑
n=1

[U(1, n)]2xn

)
+ x

∞∑
n=0

n−1∑
j=0

{
[U(1, j)]2xj

}{
U(2, n− 1− j)xn−1−j}

=

( ∞∑
n=1

[U(1, n)]2xn

)
+ x


∞∑
j=0

[U(1, j)]2xj


{ ∞∑
k=0

U(2, k)xk

}
= U�

1 (x)− 1 + x U�
1 (x)U2(x)

(a)

(b)

Figure 3.1: For a given URSA on a 2 × n chessboard, let k ∈ {0, . . . , n − 1} denote the

column containing the left-most vertical strip of length 2 (in this case n = 12 and k = 6).

Then the strip arrangement to the left of the vertical strip comes from a pair of URSAs

on 1 × k boards, while the arrangement to the right of the vertical strip is an URSA on a

smaller 2× (n− (k + 1)) chessboard.

47



or, equivalently,

U2(x) =
U�

1 (x)

1− x U�
1 (x)

(3.5)

where U�
1 (x) =

∑
n≥0[U(1, n)]2xn. In general, there is no elementary way to pass from

A(x) =
∑

n≥0 anx
n to A�(x) =

∑
n≥0 a

2
nx

n. However, since we determined U(1, n) exactly

in Equation 3.3, we can determine exactly

[U(1, n)]2 =

{
1

4

[
(2 +

√
2)n+1 + (2−

√
2)n+1

]}2

=
1

16

[
(6 + 4

√
2)n+1 + 2n+2 + (6− 4

√
2)n+1

]
and therefore

U�
1 (x) =

6 + 4
√

2

16

(
1

1− (6 + 4
√

2)x

)
+

4

16

(
1

1− 2x

)
+

6− 4
√

2

16

(
1

1− (6− 4
√

2)x

)
=

1

4

[
3− 2x

1− 12x+ 4x2
+

1

1− 2x

]
=

1− 5x+ 2x2

1− 14x+ 28x2 − 8x3
(3.6)

Substituting the result of Equation 3.6 into Equation 3.5 and simplifying, we conclude that

Theorem 3.7. The generating function U2(x) whose coefficient is the number U(2, n) of

URSAs on a 2× n chessboard is given by

U2(x) =
1− 5x+ 2x2

1− 15x+ 33x2 − 10x3
= 1 + 10x+ 119x2 + 1465x3 + 18148x4 + . . .

We note that, unlike Theorem 3.1, it is unfortunately rather difficult to obtain an exact

formula for U(2, n) from Theorem 3.7. However, the rationality of the generating function

U2(x) gives us a recurrence relation, and therefore we can compute U(2, n) from the formula

U(2, n) = 15U(2, n− 1)− 33U(2, n− 2) + 10U(2, n− 3)

with U(2, 0) = 1, U(2, 1) = 10, and U(2, 2) = 119.
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3.2 The Transfer Matrix Method

As was the case with ROSAs, determining T (m,n) exactly for m ≥ 3 using the previous

methods appears to be quite technical, so we would like to appeal to transfer matrix methods

similar to those of Chapter 2. We began the transfer matrix argument for ROSAs by

characterizing each unit square in each row as being in one of three states. We will do the

same here, but using a slightly modified characterization:

• State 0̃: The unit square is not covered by any horizontal strip.

• State 1̃: A horizontal strip begins on this unit square. That is, the unit square is

covered by a horizontal strip that does not cover the square’s nearest left neighbor.

• State 2̃: A horizontal strip is continued on this unit square. That is, the unit square

is covered by a horizontal strip that covers the square’s nearest left neighbor.

The transitions between the above states are as follows:

• A unit square in state 0̃ can be immediately followed by either a square in state 0̃

or a square in state 1̃, but not by a square in state 2̃. A horizontal strip cannot be

continued when it has not yet begun.

• A unit square in state 1̃ can be immediately followed by a square in any state.

• A unit square in state 2̃ can be immediately followed by a square in any state.

From this, we construct (as before) a corresponding directed graph G̃m on the set of

vertices {0̃, 1̃, 2̃}m whose edges are defined by the above rules. As the placement of horizontal

strips in the rows are independent of one another, we again have that G̃m can be constructed

as the m-th Kronecker power of the digraph G̃1 corresponding to URSAs on a single row

chessboard, and thus the unweighted adjacency matrix Ãm of G̃m is given by the m-th

Kronecker power of the unweighted adjacency matrix Ã1 of G̃1.
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According to the above rules, we may we may construct the unweighted adjacency matrix

of G̃1 as follows:

Ã1 =


1 1 0

1 1 1

1 1 1

 (3.8)

and from this we are able to determine the digraphs G̃m – and more importantly, the

adjacency matrices Ãm – for any m. For example, the unweighted adjacency matrix Ã2 for

the digraph G2 that models URSAs on chessboards with two rows is given by

Ã2 = Ã1 ⊗ Ã1 =


Ã1 Ã1 0

Ã1 Ã1 Ã1

Ã1 Ã1 Ã1

 =



1 1 0 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0

1 1 0 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1



(3.9)

We next recall that each vertex ũ of the digraph G̃m (or, equivalently, each edge flowing

out of ũ) should be weighted with a value w̃m(ũ) equal to the number of ways to place

vertical strips in the corresponding column. To determine the weights, we see that we can

only place such strips in regions between horizontal strips – that is, on groups of consecutive

unit squares in state 0̃ – and that the placement of strips in such a region is independent,

but not disjoint, from any other region. Thus, the total weight w̃m(ũ) is the product of the

weights of these regions containing no horizontal strips.

Therefore, we need to compute the number of ways to place vertical strips on a k × 1

chessboard column that contains no horizontal strips. This is surely equal to the number

of ways U ε(1, k) to place horizontal strips on a 1 × k chessboard row that contains no

vertical strips. These numbers satisfy a recurrence similar to that of Equation 3.2, with the
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exception that we now have only one option if the left-most unit square is not covered by

a strip. This gives us the recurrence

U ε(1, k) = U ε(1, k − 1) + U ε(1, k − 1) + U(1, k − 2) + · · ·+ U(1, 0)

Taking U ε(1, 0) = 1 and solving for the generating function Uε1(x) =
∑

k≥0 U
ε(1, k)xk as in

Theorem 3.1, we have

Uε1(x) =
1

1− x− x
1−x

=
1− x

1− 3x+ x2

=
1 +
√

5

2
√

5

 1

1−
(

1+
√

5
2

)2
x

− 1−
√

5

2
√

5

 1

1−
(

1−
√

5
2

)2
x


and therefore we have explicitly for each k ≥ 0

U ε(1, k) =
1√
5

(1 +
√

5

2

)2k+1

−

(
1−
√

5

2

)2k+1


The weight w̃m(ũ) of the vertex ũ = (ũ1, . . . , ũm) is thus computed by the formula

w̃m(ũ) =

r∏
i=1

U ε(1, β̃i − β̃i−1 − 1)

=
r∏
i=1

1√
5

(1 +
√

5

2

)2(β̃i−β̃i−1−1)+1

−

(
1−
√

5

2

)2(β̃i−β̃i−1−1)+1
 (3.10)

where, as in Equation 2.8, β̃0 = 0, β̃r = m+ 1, and β̃1, . . . , βr−1 denote the indices of each

unit square not in state 0̃ in ũ in order – that is, ũβ̃i 6= 0̃ for all 1 ≤ i < r ≤ m, β̃i < β̃j if

i < j, and ũα̃ = 0̃ if α̃ 6= β̃i for some i = 1, . . . , r − 1. With these weights, we construct the

diagonal weight matrix D̃m = (d̃i,j)0≤i,j≤3m−1 for which d̃i,j = 0 if i 6= j, and d̃i,i = w̃m(i),

again using the correspondence between integers i = 0, . . . , 3m−1 and m-tuples in {0̃, 1̃, 2̃}m

given by the representation of i in base 3.
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In the same way we did for ROSAs, we now use the matrices Ãm and D̃m to construct

the matrix-valued power series P̃(x) whose (ũ, ṽ) entry enumerates URSAs with m rows

that begin with column ũ and end with column ṽ:

P̃(x) = I3m + xD̃m + x2D̃m · Ãm · D̃m + x3(D̃m · Ãm)2 · D̃m

+ · · ·+ xn(D̃m · Ãm)n−1 · D̃m + . . .

= I3m + (I3m − xD̃m · Ãm)−1 · (xD̃m)

We finally compute the generating functions Um(x) enumerating all URSAs with m rows.

For ROSAs, we noted that the possible initial columns were contained in the unit hypercube

{0, 1}m, all of which were connected to the single vertex 0 = (0, . . . , 0). Similarly, in the

possible initial columns for URSAs, the unit squares must either not lie under a horizontal

strip or must begin a horizontal strip, so they must lie in the unit hypercube {0̃, 1̃}m. The

vertex 0̃ = (0̃, . . . , 0̃) connects to each of these vertices and only these vertices, so we may

deduce from Theorem 2.11

F̃0̃(x) = 1 + w̃m(0̃)x
∑

ṽ∈{0̃,1̃}m
F̃ṽ(x) = 1 + w̃m(0̃)xU(x) (3.11)

where F̃ṽ(x) is the generating function enumerating URSAs with ṽ as an initial column.

But we know that F̃ṽ(x) is equal to the sum of all entries of the matrix ˜P(x) in the row

corresponding to ṽ; therefore,

F̃0̃(x) = e0 · [I3m + (I3m − xD̃m · Ãm)−1 · (xD̃m)] · σt

= e0 · I3m · σt + e0 · [(I3m − xD̃m · Ãm)−1 · (xD̃m)] · σt

= 1 + x
{
e0 · [(I3m − xD̃m · Ãm)−1 · D̃m] · σt

}
and so, by Equation 3.11, we have

Theorem 3.12. If we define w̃m(0) = 1√
5

[(
1+
√

5
2

)2m+1
−
(

1−
√

5
2

)2m+1
]

, then

Um(x) =

(
1

w̃m(0)

)
e0 · [(I3m − xD̃mÃm)−1 · D̃m] · (e0 + · · ·+ e3m−1)t
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3.3 Examples of the Transfer Matrix Method

We illustrate the application of Theorem 3.12 by recovering our previous results. First,

we take the case m = 1. The unweighted adjacency matrix for the corresponding digraph

G1 is given as in Equation 3.8. For the corresponding weights, we see that there is only one

possible way to add a vertical strip to a column in state 1̃ or in state 2̃ (by adding nothing,

since the column is already completely covered by a horizontal strip), and there are two

possible ways to add a vertical strip to a column in state 0̃ (by either adding a strip or not).

Therefore, w̃m(0̃) = 2 and w̃m(1̃) = w̃m(2̃) = 1, so the weight matrix is given by

D̃1 =


2 0 0

0 1 0

0 0 1


We can compute by hand that

(I3 − xD̃1 · Ã1)−1 · D̃1 =


1− 2x −2x 0

−x 1− x −x

−x −x 1− x


−1

·


2 0 0

0 1 0

0 0 1



=
1

1− 4x+ 2x2


2(1− 2x) 2x(1− x) 2x2

2x (1− x)(1− 2x) x(1− 2x)

2x x 1− 3x


By Theorem 3.12, the generating function that enumerates URSAs on a chessboard with

one row is therefore given by

U1(x) =
1

2

(
2(1− 2x) + 2x(1− x) + 2x2

1− 4x+ 2x2

)
=

1− x
1− 4x+ 2x2

just as we determined in Theorem 3.1.
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We now take the case m = 2. By the Kronecker product structure of the digraph

G̃2 = G̃1⊗ G̃1, its unweighted adjacency matrix is given by Ã2 = Ã1⊗ Ã1, and is explicitly

written as a matrix in Equation 3.9. By Equation 2.8, the weight matrix is given by

D̃2 =



5 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


We therefore have the matrix I9 − xD̃2 · Ã2 given by

1− 5x −5x 0 −5x −5x 0 0 0 0

−2x 1− 2x −2x −2x −2x −2x 0 0 0

−2x −2x 1− 2x −2x −2x −2x 0 0 0

−2x −2x 0 1− 2x −2x 0 −2x −2x 0

−x −x −x −x 1− x −x −x −x −x

−x −x −x −x −x 1− x −x −x −x

−2x −2x 0 −2x −2x 0 1− 2x −2x 0

−x −x −x −x −x −x −x 1− x −x

−x −x −x −x −x −x −x −x 1− x


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To compute the generating function U2(x) using Theorem 3.12, we can explicitly com-

pute the inverse of the matrix I9−xD̃m · Ãm, multiply this inverse on the right by D̃m, sum

the entries of the zeroth row in the resulting matrix, and divide by w̃m(0̃). Alternatively,

we can make use of the a cofactor formula similar to that of Theorem 2.19 using URSA

weights w̃m(j) instead of ROSA weights wm(j) – that is,

Theorem 3.13. The generating function Um(x) for which the coefficient of xn is the number

U(m,n) of URSAs on an m× n chessboard is given by

Um(x) =

3m−1∑
j=0

(−1)jw̃m(j) det(I3m − xD̃m · Ãm; j, 0)

w̃m(0) det(I3m − xD̃m · Ãm)

Taking m = 2 in Theorem 3.13, we see that the denominator of the generating function

U2(x) is given by det(I9−xD̃2 · Ã2) = 1− 15x+ 33x2− 10x3, and the numerator is given by

1
5

{
5(1− 10x+ 8x2) + 10x(1− 5x+ 2x2) + 10x2(3− 2x) + 10x(1− 5x+ 2x2)

+5x(1− 5x+ 2x2) + 5x2(3− 2x) + 10x2(2x− 3) + 5x2(3− 2x) + 5x2(1 + 2x)
}

= (1− 10x+ 8x2) + (5x− 25x2 + 10x3) + (18x2 − 12x3) + (x2 + 2x3)

= 1− 5x+ 2x2

Hence, U2(x) = (1− 5x+ 2x2)/(1− 15x+ 33x2 − 10x3), as we deduced in Theorem 3.7.

Using Theorem 3.12 in conjunction with Maple [1], (see Appendix B for the correspond-

ing code), we are able to give generating functions for U(m,n) for m = 3 and m = 4; we

list these as follows.
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Theorem 3.14. The generating function U3(x) whose coefficient is the number U(3, n) of

URSAs on a 3× n chessboard is given by

U3(x) =
1− 30x+ 233x2 − 562x3 + 456x4 − 80x5

1− 64x+ 944x2 − 5053x3 + 9562x4 − 6568x5 + 1040x6

= 1 + 34x+ 1465x2 + 66155x3 + 3013656x4

+ 137507689x5 + 6276095989x6 + 286467901298x7 + . . .

Theorem 3.15. The generating function U4(x) whose coefficient is the number U(4, n) of

URSAs on a 4× n chessboard is given by U4(x) = P4(x)/Q4(x), where

P4(x) = 1− 132x+ 5046x2 − 78944x3 + 610200x4

−2488088x5 + 5257512x6 − 5220480x7 − 2116000x8 + 208000x9

Q4(x) = 1− 248x+ 15666x2 − 409152x3 + 5040016x4 − 32793024x5

+116941744x6 − 221424048x7 + 200277120x8 − 75272000x9 + 7072000x10
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CHAPTER 4

RESTRICTED STRIP ARRANGEMENTS ON SQUARE CHESSBOARDS

We turn our attention now to the number of ROSAs on large chessboards. The methods

of the previous chapter can theoretically be used for such cases, but the large matrices

produced can become unwieldy rather quickly. We thus appeal to other more analytical

methods, and we correspondingly adjust our aim slightly by attempting to give a logarithmic

estimate for the number of ROSAs as the sides of the ambient chessboard grow arbitrarily

large. More specifically, we note that, in problems of enumeration on a square lattice such

as our problem with ROSAs and the classical monomer-dimer problem, statistical physicists

have a particular interest in the case when the ambient region is itself square. This is in part

because, as noted by Flajolet and Sedgewick [8], it is often not clear how to determine the

behavior of the “diagonal” sequence in the corresponding multi-dimensional array (unless

one already knows a general formula for all cases). Therefore, in this chapter, we will narrow

our focus to counting the number of ROSAs on square chessboards whose sides have equal

side length L, and we will analyze how these numbers grow as L→∞.

4.1 Renormalization and Templating

Viewing ROSAs as a model of statistical mechanics, there is a technique for dealing

with models on a large surface by viewing them macroscopically and renormalizing the

scale (such techniques are discussed in detail by Cardy [6]). In practical terms, we plan to
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subdivide our large chessboard of side length L into square cells of length s < L, ideally

with s evenly dividing L; the idea is to reduce the problem for a large L × L chessboard

of unit squares to a smaller N × N grid of cells, where N = L/s. This renormalization

program was successfully carried out by Larsen [9], who was able to relate the placements

of non-attacking kings on a chessboard to placements of non-interacting monomers in the

established hard hexagon model of statistical physics.

We label each of our N2 cells as being of one of three types.

• An H-cell is a cell in which a horizontal strip can transit the cell – i.e., a horizontal

strip is allowed to stretch across the width of the given H-cell and overlap with one

or both of its horizontally neighboring cells.

• Similarly, a V -cell is a cell in which a vertical strip can transit the cell – i.e., a vertical

strip is allowed to stretch across the height of the given V -cell and overlap with one

or both of its vertically neighboring cells.

• An O-cell is a cell in which neither a horizontal strip nor a vertical strip can transit

the cell – i.e., any strip that intersects an O-cell can intersect at most one of its

horizontal or vertical nearest neighbors.

We note that, due to the condition that no two strips overlap, noH-cell can be a V -cell (since

this would disallow any horizontal strip to transit the cell), and vice versa. In particular, no

cell can be both an H-cell and a V -cell, so the above list is a complete characterization of

cells, and we refer to a labeling of all N ×N cells according to this list as a template of the

chessboard. We also note that it is allowed for a horizontal strip in a V -cell to overlap with

at most one of its horizontal neighbors, but it cannot overlap with both of them, for this

would, as in the previous note, prohibit vertical strips from transiting the V -cell (and similar

remarks hold for vertical strips in H-cells). In Figure 4.1(a), we illustrate some horizontal

strips that are compatible with the given template, and we illustrate some incompatible

strips in Figure 4.1(b).
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4.2 Placing Horizontal Strips on a Given Template

4.2.1 A Single Row of the Template

In the previous chapter, we analyzed ROSAs by constructing them one row (or column)

of unit squares at a time; we will adopt a similar philosophy here by looking first at a single

row of cells in a template, and thus, for the time being, we will focus on the placement of

horizontal strips. In this respect, we note that a horizontal strip sees no difference between

a V -cell and an O-cell – it cannot span the length of either. Therefore, as we analyze

horizontal strips, we will simplify matters by labeling all O-cells as V -cells.

Let {a0, a1, . . . } and {b0, b1, . . . } be sequences of non-negative integers with the proper-

ties that finitely many terms of each sequence are non-zero, that bj = 0 implies aj+1 = 0

for all j, and that aj = 0 implies bj = 0 for all j 6= 0. We say that this pair of sequences

corresponds to a row of the template if that row consists of a0 H-cells in the beginning (or

the left-most position), followed by b0 V -cells, followed by a1 H-cells, followed by b1 V -cells,

etc. Define A =
∑
aj to be the number of H-cells in the row of the template, and define

B =
∑
bj to be the number of V -cells (so that A + B = N is the total number of cells in

the row of the template).

Theorem 4.1. If a row of a template of a ROSA corresponds to the sequences {a0, a1, . . . }

and {b0, b1, . . . }, then the number of ways to place a horizontal strip on a row of the ROSA

that lies within this row of cells in the template is given by
1 +

(
Ns+ 1

2

)
B = 0

s+
∑(

ais+ 1

2

)
+

(
s

2

)
[3N +A− 2(a0 + ak + 1)] B 6= 0

(4.2)

where k is the minimum value for which bk = 0 (i.e., there are k contiguous groups of

V -cells in the row).
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Proof. A non-empty strip must exhibit one of the following behaviors:

1. The strip is contained in a group of ai consecutive H-cells.

In this case, the strip can transit any cell in this group. Thus, the number of strips

in this case is the number of strips over ais spaces – this is precisely
(
ais+1

2

)
.

2. It is contained in a group of bj consecutive V -cells.

In this case, the strip cannot transit over any cell in this group. Thus, either the strip

is entirely contained in a single cell, and there are

(s− 1) + (s− 1) + (s− 2) + · · ·+ 2 + 1 = (s− 1)[1 + s/2]

possibilities in this case, or the strip straddles two consecutive cells (while avoiding

the remaining vertical edge of each cell), and hence there are (s− 1)2 possibilities in

this case. There are bj single cells in this group and bj − 1 pairs of consecutive cells,

which gives the total number of possible non-empty strips as

bj(s− 1)(1 + s/2) + (bj − 1)(s− 1)2 = 3bj

(
s

2

)
− (s− 1)2

3. The strip straddles a border between a group of ai H-cells and a group of bi V -cells.

In this case, the strip can transit through any H-cell in the first group, and one end of

the cell must be contained in a single V -cell (but the strip must not transit the cell).

Thus, we have sai choices for the end of the strip in the region of H-cells, and s− 1

choices for the end of the strip in the region of V -cells, giving a total of ais(s − 1)

possible strips in this case.

4. The strip straddles a border between a group of bi V -cells and a group of ai+1 H-cells.

This is the basically the same as the previous case, and we similarly have ai+1s(s− 1)

possible strips in this case.
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5. The strip stretches across an entire group of am H-cells and has its ends in a group

of bm−1 V -cells and in a group of bm V -cells.

The ends of this strip must be contained in a single V -cell to the left of the H-cells

(for which there are s−1 choices) and in a single V -cell to the right of the H-cells (for

which there are again s − 1 choices). Thus, given any group of consecutive H-cells,

there are (s− 1)2 non-empty strips that stretch across the group of H-cells and have

their ends in the surrounding groups of V -cells.

If B = 0, then a1 = A = N , so every strip exhibits the first behavior above, and hence (now

counting the empty strip) there are 1 +
(
As+1

2

)
= 1 +

(
Ns+1

2

)
possible strips. Otherwise, we

must sum over all possible cases. In what follows, let k = min{x : bx = 0} be the number

of contiguous groups of V -cells.

1. The contribution of those strips exhibiting the first behavior is simply
∑(

ais+1
2

)
.

2. The contribution of those strips exhibiting the second behavior is

k−1∑
j=0

[
3bj

(
s

2

)
− (s− 1)2

]
= 3B

(
s

2

)
− k(s− 1)2

3 or 4. Each group of H-cells contributes exactly one term to the sum of the strips exhibiting

the third behavior (except the last, or the k-th), and each group of H-cells contributes

exactly one term to the sum of the strips exhibiting the fourth behavior (except the

zeroth). As these behaviors are mutually exclusive, the total number of strips that

exhibit either behavior is

2
∑

(ais(s− 1))− a0s(s− 1)− aks(s− 1) =

(
s

2

)
[4A− 2a0 − 2ak]

5. Finally, for the number of strips that exhibit the last behavior, there is a summand of

(s− 1)2 for each group of H-cells that is sandwiched between two groups of V -cells –

this corresponds to the number of consecutive pairs of groups of consecutive V -cells,

which is k − 1 if k > 0 and 0 if k = 0. (Note that this is why we need to consider the

case k = 0 separately.)
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Therefore, the total number of strips (including the empty strip) that are compatible with

the given template for the row is

1 +
∑(

ais+ 1

2

)
+ 3B

(
s

2

)
− k(s− 1)2 +

(
s

2

)
[4A− 2a0 − 2ak] + (k − 1)(s− 1)2

= 1 +
∑(

ais+ 1

2

)
+

(
s

2

)
[4A+ 3B − 2a0 − 2ak]− (s− 1)2

= s+
∑(

ais+ 1

2

)
+

(
s

2

)
[3N +A− 2a0 − 2ak − 2]

This completes the proof of the theorem �

Theorem 4.1 gives exactly computable expressions for the number of ways to place a

horizontal strip in a single row of a chessboard with a given template. However, it is made

somewhat unwieldy by the presence of a variable number of parameters, so we attempt to

simplify matters by taking an upper bound. The sum of binomial coefficents admits a nice

simplification with the following observation.

Lemma 4.3. For any finite collection x0, . . . , xr of non-negative integers,

(
x0 + 1

2

)
+ · · ·+

(
xr + 1

2

)
≤
(
x1 + · · ·+ xr + 1

2

)

This can be proven algebraically by an inductive argument with the inequality

(
x0 + 1

2

)
+

(
x1 + 1

2

)
=

x2
0 + x0

2
+
x2

1 + x1

2

≤ x2
0 + 2x0x1 + x2

1 + x0 + x1

2

≤ (x0 + x1)2 + (x0 + x1)

2

≤
(
x0 + x1 + 1

2

)
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However, Lemma 4.3 also follows from a combinatorial argument that is particularly

germane to our problem. Indeed, we may regard the right hand side of Lemma 4.3 as

the number of unordered pairs of elements belonging to a totally ordered set X of size

x1 + · · ·+ xr, and we may regard the left-hand side as the number of such unordered pairs

whose elements belong to the same equivalence class Xi of X of size xi for some i = 1, . . . , r.

In particular, if we take xi = ais, Lemma 4.3 states algebraically that the sum of the

binomial coefficients
∑(

ais+1
2

)
is dominated by the single binomial coefficient

(
As+1

2

)
. The

combinatorial interpretation of this statement is interesting. Let X be the set of all vertical

lattice lines that intersect an H-cell (even on the edge of the cell) in the desired row of the

template, and order the elements of X lexicographically as they appear from left to right

on the chessboard; then, for i = 0, . . . , k, let Xi be the subset of X whose elements intersect

the i-th contiguous group of H-cells (that appears before the i-th group of V -cells). Notice

that selecting two elements of X is equivalent to selecting the endpoints of a horizontal strip

on the chessboard; therefore, the combinatorial interpretation of Lemma 4.3 with xi = ais

is that the number of ways to place a horizontal strip on a ROSA that is entirely contained

in a group of H-cells on a template is maximized when there is a single group of contiguous

H-cells in the corresponding row of the template.

With a single group of contiguous H-cells, it follows that this optimal row has at most

two groups of contiguous V -cells. Thus, either we have k = 0, in which the group of H-cells

stretches the width of the template; we have k = 1, in which the group of H-cells is on one

side of the template; or we have k = 2, in which the group of H-cells occupies a place in

the middle of the row away from the endpoints. From Theorem 4.1 and Lemma 4.3, we

can compute the maximal number of ways to place a horizontal strip on a single row of a

ROSA that is contained in a row of an N ×N template that contains a given number A of

H-cells in each case; we have organized the results in Table 4.2.

64



k = 0 Tfull = 1 +

(
Ns+ 1

2

)
=

(
s2

2

)
N2 +

(s
2

)
N + 1

k = 1

Tside(A) = s+

(
As+ 1

2

)
+

(
s

2

)
[3N −A− 2]

=
s2

2

(
A2 −

(
s− 2

s

)
A+

(s− 1)(3N − 2) + 2

s

)

k = 2

Tmid(A) = s+

(
As+ 1

2

)
+

(
s

2

)
[3N +A− 2]

=
s2

2

(
A2 +A+

(s− 1)(3N − 2) + 2

s

)

Table 4.2: The maximum number of ways to place a horizontal strip in a row of a template

with a given number A of H-cells and a given number k of contiguous groups of V -cells.

Note that, in the case when k = 0, every cell in the row is an H-cell, and therefore A is not

variable – it must be equal to the total number N of cells in the row.

Let THmax(A) be the maximum number of ways to place a horizontal strip in a row of

the ROSA whose corresponding row in a compatible template has a number A of H-cells.

Directly comparing the expressions in the above table as polynomials in A (for fixed values

of N and s), the expression that gives the largest value is the one corresponding to the

case k = 2, and therefore we can confidently assert that Tmid(A) is an upper bound for

THmax(A). It may, however, be appropriate in the sequel to replace Tmid with a sharper

bound involving either the expression Tfull or the polynomial Tside, and so we will keep

them in mind as we obtain results for Tmid.

For a quick remark, we note that Tmid and Tside, considered as polynomials of A, have

the same “constant term” – i.e., the same output value for the input value A = 0 – and

the same leading coefficient of A, as abstract expressions of N and s. The ratio of this

“constant term” to the leading coefficient comes up rather frequently in the sequel, so, to
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ease the discussion, we will henceforth define

K =
s+

(
s
2

)
[3N − 2]

s2/2
=

(s− 1)(3N − 2) + 2

s
= 3N − 2−

(
3N − 4

s

)

We also remark that K is “well-behaved” in the sense that it is bounded for a given N ;

indeed, as s ≥ 1, we have 2 ≤ K ≤ 3N − 2 < 3N , as K is a decreasing function of s.

4.2.2 Multiple Rows of the Template: Inequalities of Convex Analysis

Now let us consider all N rows of the template together. For a given template, let T H

be the maximum number of ways to place at most one horizontal strip in each row of the

ROSA that is compatible with that template. Surely the placement of horizontal strips in

the distinct rows of the template are independent of one another. Furthermore, each row of

the template corresponds to s rows of the ROSA, so, if A1, A2, . . . , AN denote the numbers

of H-cells in each of the rows of the template, numbered in order from top to bottom, then

T H = [THmax(A1)]s [THmax(A2)]s . . . [THmax(AN )]s

≤ [Tmid(A1)]s [Tmid(A2)]s . . . [Tmid(An)]s (4.4)

or equivalently log(T H) ≤ s log[Tmid(A1)] + · · · + s log[Tmid(AN )], where log here and

throughout this chapter denotes the natural logarithm. We could easily find an upper

bound for T H if Tmid were log-concave (i.e., if the composition log ◦ Tmid were concave),

for we could maximize the right-hand side of Inequality 4.4 by replacing each Ai with their

collective average. Thus, we attempt to determine if Tmid is indeed a log-concave function.

We begin by establishing a simple criterion∗ for log-concavity that parallels the definition

of log-concave sequences.

∗Boyd and Vandenberghe [4] present a generalization of Lemma 4.5 to functions of multiple variables

without proof. The proof of Lemma 4.5 that we have given can easily be adapted to this generalization.
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Lemma 4.5. A twice-differentiable function f(x) : R→ R is log-concave if and only if

f(x)f ′′(x) < (f ′(x))2

Proof. f(x) is log-concave if and only if

0 >
d2(log f(x))

dx2
=

d

dx

(
f ′(x)

f(x)

)
=
f(x)f ′′(x)− (f ′(x))2

(f(x))2

As the denominator is always positive, this holds if and only if 0 > f(x)f ′′(x)−(f ′(x))2. �

Applying Lemma 4.5 to quadratic functions gives

Theorem 4.6. Let f(x) = ax2 + bx + c be a quadratic polynomial with a > 0. Then f is

log-concave in a neighborhood of all x that satisfy

x >
−b+

√
|b2 − 4ac|
2a

or x <
−b−

√
|b2 − 4ac|
2a

Proof. We have f ′(x) = 2ax + b and f ′′(x) = 2a; thus, by the previous lemma, f is log-

concave if and only if

2a(ax2 + bx+ c) < (2ax+ b)2

0 < 2a2x2 + 2abx+ (b2 − 2ac) (4.7)

The right-hand side of Inequality 4.7 is another quadratic polynomial with discriminant

D = (2ab)2 − 4(2a2)(b2 − 2ac) = −4a2(b2 − 4ac). If D < 0 (which occurs if and only if

b2 − 4ac > 0), then Inequality 4.7 holds for all x in the domain of log f(x) – that is, for all

x with f(x) > 0. By the quadratic formula applied to f and the fact that a > 0, we have

f(x) > 0 if and only if

x >
−b+

√
b2 − 4ac

2a
or x <

−b−
√
b2 − 4a

2a
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Otherwise, if D ≥ 0 (or, equivalently, b2−4ac ≤ 0), it follows from the quadratic formula

(and the fact that 2a2 > 0) that Inequality 4.7 is satisfied by all x such that

x >
−2ab+

√
4a2b2 − 4(2a2)(b2 − 2ac)

2(2a2)
=
−b+

√
4ac− b2

2a
(4.8)

or by all x such that

x <
−2ab−

√
4a2b2 − 4(2a2)(b2 − 2ac)

2(2a2)
=
−b−

√
4ac− b2

2a
(4.9)

This covers all cases, and thus completes the proof of the theorem. �

We are mainly interested in the behavior of the quadratic polynomials Tside and Tmid for

non-negative input. With this in mind, we easily deduce from Theorem 4.6 the following:

Corollary 4.10.

1. Tmid(A) is log-concave for all A > Amid = 1
2(−1 +

√
4K − 1).

2. Tside(A) is log-concave for all

A > Aside =
(s− 2) +

√
4Ks2 − (s− 2)2

2s

In particular, Tside(A) is log-concave for all A > 1
2(1 +

√
4K − 1).

Proof. Part (a) follows directly from Theorem 4.6. The first claim of part (b) also follows

from Theorem 4.6 – we note that Aside is well-defined as a real number since(
s− 2

2s

)2

<

(
1

2

)2

< 2 < K

The second claim in part (b) follows from the fact that the expression on the right hand side

of Inequality 4.8 is a decreasing function of b for b > −
√

2ac. In the case of Tside/(s
2/2),

whose leading coefficient is 1 and whose constant term is K, we have

−
(
s− 2

s

)
> −1 > −2 = −

√
2(2) > −

√
2K

and therefore the input value of the inflection point for b = −1 is greater than the corre-

sponding value for b = −(s− 2)/2. �
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In particular, the quadratic polynomial Tmid is not log-concave everywhere (and indeed

neither is Tside), so we cannot directly use Jensen’s inequality. However, we do have a

partial result, the intuition for which is illustrated in Figure 4.3.

Theorem 4.11. Let f(x) be convex on (0, I) and concave on (I,M). Let x1, . . . , xP ∈ [0, I),

and let xP+1, . . . , xN ∈ [I,M ]. Then there exists z ∈ [0, N) such that

f(x1) + · · ·+ f(xN ) ≤ zf(0) + (N − z)f
(
x1 + · · ·+ xN

N − z

)
Proof. For each j = 1, . . . , P , we have, by the definition of convexity,

f(xj) = f
((xi

I

)
I +

(
1− xi

I

)
0
)
≤
(xi
I

)
f(I) +

(
1− xi

I

)
f(0)

Therefore, we have

f(x1) + · · ·+ f(xP ) ≤
(
x1 + · · ·+ xP

I

)
f(I) +

(
P − x1 + · · ·+ xP

I

)
f(0)

≤ zf(0) + (P − z)f(I)

where z = P − (x1 + · · · + xP )/I is the coefficient of f(0). Note that this definition of z

gives x1 + · · ·+ xP = (P − z)I.

Furthermore, by Jensen’s inequality and the concavity of f on (I,M), we have

f(xP+1) + · · ·+ f(xN ) ≤ (N − P )f

(
xP+1 + · · ·+ xN

N − P

)
Combining these results with one more application of Jensen’s inequality gives

f(x1) + · · ·+ f(xN ) ≤ zf(0) + (P − z)f(I) + (N − P )f

(
xP+1 + · · ·+ xN

N − P

)
≤ zf(0)

+((P − z) + (N − P ))f

(P − z)I + (N − P )
(
xP+1+···+xN

N−P

)
(P − z) + (N − P )


≤ zf(0) + (N − z)f

(
x1 + · · ·+ xN

N − z

)
This completes the proof of the theorem. �
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Figure 4.3: Intuition for Theorem 4.11. Informally, we think of the given values x1, . . . , xN

as particles or balls on a hillside. Then, to obtain an upper bound, the balls in the concave

region will tend toward either end (i.e., to 0 or the inflection point); afterward, the balls

in the concave region (including those from the convex region that have migrated to the

inflection point) will tend toward a common point.

We pause for a moment to note the following about Theorem 4.11 in comparison with

Jensen’s Inequality. In vague terms, Jensen’s Inequality implies that, for a concave function

g(t) on a convex domain, a sum of output values g(y1) + · · ·+ g(yN ) has an upper bound in

the form of a multiple of an output value g(y) whose corresponding input value y depends

on the sum of input values y1 + · · ·+ yN and the number N of such values, and where g is

concave in a neighborhood about y (indeed, it is concave near any point in its domain).

Similarly, for a function f that is part convex and part concave, Theorem 4.11 implies

that a sum of output values f(x1) + · · ·+ f(xN ) has an upper bound that in the form of a

linear combination of output values f(0) and f(x). Like the value y previously discussed,

this special argument x also depends on the sum of the input values x1 + · · ·+ xN and on

the number N of input values, but x depends additionally on a new parameter z, which
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in turn depends on the sum x1 + · · · + xP of input values that are smaller than the input

value I of the inflection point of f , as well as the number P of these values. The similarities

between x and y do not end here: f must also be concave in a neighborhood about x, since

x1 + · · ·+ xN = (x1 + · · ·+ xP ) + (xP+1 + · · ·+ xN ) ≥ I(P − z) + I(N − P ) = I(N − z)

Returning to our original problem, we apply Theorem 4.11 to the particular function

f(A) = s log(Tmid(A)) to obtain the following result:

Corollary 4.12. Consider a given template whose rows have N blocks of size s, and let H

be the total number of H-cells in the template. Then there exists some 0 ≤ z ≤ N such that

the maximum number T H of horizontal strips that can be placed in a board compatible with

the given template satisfies

log T H ≤ zs log
s2K

2
+ (N − z)s log

(
s2

2

((
H

N − z

)2

+

(
H

N − z

)
+K

))

≤ Ns log
s2K

2
+ (N − z)s log

(
1

K

((
H

N − z

)2

+

(
H

N − z

)
+K

))

4.2.3 The Optimum Configuration of H-Cells

This result in effect binarizes (and thus simplifies) our analysis. In the ideal event that

z and H/(N − z) are integers, Corollary 4.12 has a very practical interpretation. Given a

template with a set number H of H-cells, Corollary 4.12 allows us to replace this template

with one that has the same number of H-cells but admits a greater number of horizontal

strip placements. The corresponding value of z can be thought of as the number of rows

in this optimized template that are devoid of H-cells, and the remaining N − z rows of the

optimized template have a uniform number H/(N − z) of H-cells. The question remains,

however, as to whether it is better to have more rows that contain H-cells but where each

row has a relatively small number of them, or to have fewer rows containing H-cells but

where each such row has a comparatively large amount of them.
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To answer this question, we set

MHmid(z) =


Ns log Tmid(0) + (N − z)s log

[
Tmid

(
H

N − z

)/
Tmid(0)

]
0 ≤ z < N

Ns log Tmid(0) z = N

That is, we regard the greater side of the inequality of Corollary 4.12 as a function of z

(with an auxiliary integer parameter H). We indicated above that we are most interested

in the case where z (and H/(N − z)) is an integer, but, given that we are looking for

an upper bound and not necessarily for an exact answer, we may relax this restriction to

the integers and thus allow z to take on real values – the benefit of this is that we may

take full advantage of any analytic methods we may require. Therefore, for any integer

H = 1, . . . , N2, we view MHmid as a real valued function that takes an input value anywhere

in the real interval [0, N ].

Then, for a given value ofH, let z̃ = z̃(H) ∈ [0, N ] be such that MH(z̃) is a maximum; we

note that such a value must exist, as MHmid is a continuous function on a compact domain.

Given how z̃ is defined, we know that it must satisfy

0 =
∂MHmid(z)

∂z

∣∣∣∣
z=z̃

= −s log

(
1

K

((
H

N − z̃

)2

+

(
H

N − z̃

)
+K

))

+

(
Hs

N − z̃

) 2
(
Hs
N−z̃

)
+ 1(

H
N−z̃

)2
+
(
H

N−z̃

)
+K

 (4.13)

= −s log

(
1

K

(
x2 + x+K

))
+ s

(
2x2 + x

x2 + x+K

)
(4.14)

where x = H/(N − z̃). Equation 4.14 defines x implicitly as a positive function g(K) of K,

and, since x relates H and z̃ inversely, we see that z̃ is a decreasing function of H; more

explicitly, if H/(N − z̃) = x = g(K), then z̃ = N −H/g(K), so that z̃ is a linear function

of H with slope −1/g(K) < 0.
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Now consider H1 and H2 with H1 < H2. By the above argument, the corresponding

z-values z̃1 = z̃(H1) and z̃2 = z̃(H2) satisfy z̃1 > z̃2. If MH1
mid(z̃1) > MH2

mid(z̃2), then

z̃1s log(Tmid(0)) + (N − z̃1)s log

(
Tmid

(
H1

N − z̃1

))
> z̃2s log(Tmid(0)) + (N − z̃2)s log

(
Tmid

(
H2

N − z̃2

))
which can be rewritten as

(z̃1 − z̃2)s log(Tmid(0))

> (N − z̃2)s log

(
Tmid

(
H2

N − z̃2

))
− (N − z̃1)s log

(
Tmid

(
H1

N − z̃1

))
(4.15)

However, Jensen’s Inequality implies that

(N − z̃2)s log

(
Tmid

(
H2

N − z̃2

))
≥ (z̃1 − z̃2)s log

(
Tmid

(
H2 −H1

z̃1 − z̃2

))
+ (N − z̃1)s log

(
Tmid

(
H1

N − z̃1

))
(4.16)

Note that Jensen’s Inequality applies, as we have Hi > (N − z̃i)A0 for i = 1, 2, both of

which imply H2−H1 > A0[(N − z̃2)− (N − z̃1)] = A0[z̃1− z̃2]. Therefore, Inequalities 4.15

and 4.16 together imply

(z̃1 − z̃2)s log(Tmid(0)) > (z̃1 − z̃2)s log

(
Tmid

(
H2 −H1

z̃1 − z̃2

))
Tmid(0) > Tmid

(
H2 −H1

z̃1 − z̃2

)
But this contradicts the fact that Tmid is strictly increasing on (0,∞). Hence, if H1 ≤ H2,

then MH1
mid(z̃1) ≤MH2

mid(z̃2).

We remark that Theorem 4.11 applies also to the function h(A) = s log(Tside(A)). We

may thus, in analogy with the above, define the function

MHside(z) =


Ns log Tside(0) + (N − z)s log

[
Tside

(
H

N − z

)/
Tside(0)

]
0 ≤ z < N

Ns log Tside(0) z = N
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and we may also define the corresponding function z̃side(H) that is decreasing, and has the

additional property that MHside(z) < MHside(z̃side(H)) for all H and all z. We would like to

apply to Mside the same (sort of) argument that we made for Mmid, but more care must

be taken for MHside, as Tside is not increasing on all of (0,∞). In spite of this, we still have

Tside(A) =
s2

2

[(
A− s− 2

2s

)2

+
4Ks2 − (s− 2)2

4s2

]

from which it follows that Tside is symmetric about the axis A − (s − 2)/2s = 0; thus,

Tside(A) < Tside(0) if and only if 0 < A < (s − 2)/s. Hence, for H1 < H2, we have

MH1
side(z̃side(H1)) > MH2

side(z̃side(H2)) only if the special input value

H2 −H1

z̃side(H1)− z̃side(H2)

analogous to that of Inequality 4.16 is positive (which it is easily seen to be) and less than

(s− 2)/s. Recall, however, that we justified Inequality 4.16 using Jensen’s Inequality, and

we note that Jensen’s Inequality may be applied to Tside only if

H2 −H1

z̃side(H1)− z̃side(H2)
≥ Aside =

s− 2

2s
+

√
K −

(
s− 2

2s

)2

>
s− 2

2s
+
√

2− 1 >
s− 2

2s
+

1

2
>
s− 2

2s
+
s− 2

2s
=
s− 2

s

Therefore, the output of Tside at this special input cannot be less than the output at 0, so

we cannot have MH1
side(z̃(H1)) > MH2

side(z̃(H2)) if H1 < H2.

In all cases, then, we deduce that (the upper bound for) the maximum possible number

of ways to place horizontal strips on a template increases as the number of H-cells of the

template increases and, consequently, as the number z of rows without H-cells decreases.

Indeed, the situation is optimized when z̃ is as small as possible, and we are now interested

in determining the values of H corresponding to this minimum value of z̃. We can easily

see that we must have z̃ = 0 for H = N2, as the H-cells exhaust all of the available cells.

In fact, this is (fortunately) not an isolated phenomenon – we must also have z̃ = 0 for
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H > N(N − 1), as there are exactly N(N − 1) cells in any collection of N − 1 rows, so

having more than this number of H-cells forces us to have an H-cell in the one remaining

row not in the aforementioned collection, and thus we have H-cells in every row. Since the

optimum value of z̃(H) is a decreasing function of H, there must be a minimum value of

H for which z̃(H) = 0. Using asymptotic analysis, we can give a non-effective result that

nevertheless provides a good understanding of where we should expect to see z̃(H) = 0.

Theorem 4.17. Suppose H = Ω(N3/2+ε) – that is, H ≥ CN3/2+ε for some positive con-

stants C and ε. Then, for sufficiently large N (depending on C and ε), MHmid(z) is maxi-

mized when z = 0 – that is,

log Tmax ≤MHmid(0) = Ns log

(
s2

2

[(
H
N

)2

+

(
H
N

)
+K

])
= Ns log

(
Tmid

(
H
N

))
Proof. For any 0 ≤ z < N , we have

x =
H

N − z
≥ H
N
≥ CN1/2+ε ⇐⇒ x2 =

(
H

N − z

)2

≥
(
H
N

)2

≥ C2N1+2ε

Then we have from Equation 4.14 that

d(MHmid(z))

dz
= s

[
− log

(
1

K

(
x2 + x+K

))
+

(
2x2 + x

x2 + x+K

)]
≤ s

[
2x2 + x

x2
− log

(
x2

K

)]
≤ s

[
2 +

1

x
− log

(
x2

K

)]
≤ s

[
2 +

1

CN1/2+ε
− log

(
CN1+2ε

K

)]
Note that K ≤ 3N − 2 < 3N , and hence

d(MHmid(z))

dz
≤ s

[
2 +

1

CN1/2+ε
− log

(
C2N1+2ε

3N

)]
≤ s

[
2− log

(
C2

3

)
+

1

CN1/2+ε
− 2ε log(N)

]
log(N) → ∞ as N → ∞, whereas 1/N1/2+ε → 0; hence, for sufficiently large N , the

logarithmic term must dominate the rational term. This implies that MHmid is decreasing in

a neighborhood of all z ∈ (0, N), and therefore MHmid achieves its maximum when z = 0. �
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Theorem 4.17 seems to imply that the least number of H-cells for which we should not

have any rows without H-cells is of the form O(N3/2) as N →∞. For a more explicit and

a more effective result, we have

Theorem 4.18. log T Hmax ≤MHmid(0) = Ns log (Tmid (H/N)) if

H
N
≥ Cmid =

−1 +
√

16K + 1

2

Recall that K = O(N), which implies that Cmid = O(N1/2), and thus Theorem 4.18 holds

for H ≥ N [O(N1/2)] = O(N3/2), which is in agreement with our preceding remark.

Proof. With x = H/(N − z), which is positive for any z < N , Equation 4.14 gives

d(MHmid(z))

dz
= s

[
2x2 + x

x2 + x+K
− log

(
x2 + x+K

K

)]
= s

[
2− x+ 2K

x2 + x+K
− log

(
x2 + x+K

K

)]
< s

[
2− 2

x2+x+K
K

− log

(
x2 + x+K

K

)]
< s[2− 2w−1 − log(w)]

where w = (x2 + x+K)/K.

A simple analysis of the expression 2− 2w−1 − log(w) (see Figure 4.4) shows that it is

negative for all w ≥ 5, and hence MHmid is decreasing whenever

x2 + x+K

K
= w ≥ 5 ⇐⇒ x2 + x− 4K ≥ 0 ⇐⇒ x ≥ −1 +

√
1 + 16K

2

For z ∈ [0, N), we have x > H
N , and so, in order to ensure that MHmid is decreasing in a

neighborhood of all z ∈ (0, N) (and hence ensure that MHmid is maximized when z = 0), we

require that H/N ≥ 1
2(−1 +

√
1 + 16K). �
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Figure 4.4: A graph of the function f(w) = 2 − 2w−1 − log(w) showing that the function

is indeed negative for w ≥ 5. One may also argue by determining that the function f is

decreasing for all w > 2, and then compute that f(5) < 0.

4.3 Placing Horizontal and Vertical Strips: The Optimum Template

It should be noted that all of our results for horizontal strips and H-cells hold exactly

the same for vertical strips and V -cells. Therefore, if we consider a template where H is

the number of H-cells and V is the number of V -cells in the template, there exist (real)

numbers zH, zV ∈ [0, N ] such that the number T of ROSAs that are compatible with the

template, that have no two strips overlapping, and are such that each row and column of

the chessboard contains at most one strip satisfies

log(T ) ≤
{
Ns log (Tmid(0)) + (N − zH)s log

[
Tmid

(
H

N − zH

)/
Tmid(0)

]}
(4.19)

+

{
Ns log (Tmid(0)) + (N − zV)s log

[
Tmid

(
V

N − zV

)/
Tmid(0)

]}
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We recall that the expressions H/(N − zH) and V/(N − zV) arise from Theorem 4.11;

immediately after proving this theorem, we noted that the value of such expressions must lie

in the region of concavity for the function under consideration (see the associated discussion

on p. 71). In particular, concerning the function f(A) = s log(Tmid(A)), we find that both

valuesH/(N−zH) and V/(N−zV) must be larger than the input value Amid of the (positive)

inflection point of f . We may therefore apply Jensen’s Inequality to improve (and simplify)

our upper bound from Inequality 4.19 with the result

log(T ) ≤ 2Ns log

(
s2K

2

)
+ ((N − zH) + (N − zV ))s log

[
Tmid

(
H+ V

(N − zH) + (N − zV )

)/
Tmid(0)

]
(4.20)

Defining ζ = zH+zV to be a real number in the interval [0, 2N ], and noting thatH+ V = N2

must equal the total number of cells in the template, we can write our improved upper bound

of Inequality 4.20 in the concise form

log(T ) ≤ 2Ns log

(
s2K

2

)
+ (2N − ζ)s log

[
1

K

((
N2

2N − ζ

)2

+

(
N2

2N − ζ

)
+K

)]
(4.21)

We recall that it was optimal for us in the previous arguments to have zH = zV = 0

– it should therefore be optimal for us in the current situation to have ζ = zH + zV = 0.

Theorem 4.18 gave us a sufficient condition under which we have zH = 0 and zV = 0;

applying the very same methods of Theorem 4.18 to the expression in Inequality 4.21, we

obtain the following corresponding result.

Theorem 4.22. The number of ROSAs on a chessboard with a given N × N template is

at most 2Ns log

(
Tmid

(
N

2

))
if
N

2
≥ Cmid =

−1 +
√

16K + 1

2
.

Proof. Indeed, we may define the function Mmid : [0, 2N ]→ [0,∞) by

Mmid(ζ) =


2Ns log (Tmid(0)) + (2N − ζ)s log

[
Tmid

(
N2

2N − ζ

)/
Tmid(0)

]
0 ≤ ζ < 2N

2Ns log (Tmid(0)) ζ = 2N
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Then, setting y = N2/(2N − ζ), which is positive for all ζ < 2N , we have

d(Mmid(ζ))

dζ
= s

[
2y2 + y

y2 + y +K
− log

(
y2 + y +K

K

)]
= s

[
2− y + 2K

y2 + y +K
− log

(
y2 + y +K

K

)]
< s

[
2− 2

y2+y+K
K

− log

(
y2 + y +K

K

)]
< s[2− 2v−1 − log(v)]

where v = (y2 +y+K)/K. As in Theorem 4.18, the expression 2−2v−1− log(v) is negative

for all v ≥ 5 (visually, we refer again to Figure 4.4), and henceMmid is decreasing whenever

y2 + y +K

K
= v ≥ 5 ⇐⇒ y2 + y − 4K ≥ 0 ⇐⇒ y ≥ −1 +

√
1 + 16K

2

For ζ ∈ [0, 2N), we have y > N2/2N = N/2, and so, in order to ensure that Mmid is

decreasing in a neighborhood of all ζ ∈ (0, 2N) (and hence ensure thatMmid is maximized

when ζ = 0), we require that N
2 ≥

1
2(−1 +

√
1 + 16K). �

Notice that, as K < 3N , the result of Theorem 4.22 holds for all N with

N

2
≥
−1 +

√
16(3N) + 1

2

N + 1 ≥
√

48N + 1

N2 + 2N + 1 ≥ 48N + 1

N2 − 46N ≥ 0

N ≥ 46

Thus, if N is sufficiently large and even, the N × N template with the highest number of

compatible strip arrangements contains an equal number (N/2) of H-cells in each of its N

rows (for a total number N2/2 of H-cells) and an equal number (N/2) of V -cells in each of

its N columns (for a total number N2/2 of V -cells). We determined earlier that the number

of compatible strip arrangements is maximized if the H-cells in each row and the V -cells
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in each column are contiguous; this implies that the templates that admit the most strip

placements are those that are divided into four square quadrants of size N2/4 that consist

solely of H-cells, V -cells, H-cells, and V -cells respectively as one traverses them in a cyclic

order (see Figure 4.5). If N is odd, we are able to verify empirically that essentially the

same picture holds, with some leeway with the arrangement of cells in the center row and

in the center column. However, as we are interested in an upper bound for (the logarithm

of) the number of ROSAs as the side length L of the chessboard (and consequently as N)

tends to ∞, knowledge of what happens when N is even is enough – indeed, when N is

odd, one may take the corresponding result for the even integer N + 1 as an upper bound

for log T (Ns,Ns), for it is easy to see that log T (L,L) increases as L increases.

Therefore, there is no better template than the “quartered” template. In such a tem-

plate, we notice that each group of H-cells in any given row of the template lies on one side

of that row, and each group of V -cells in any given column of the template is positioned

on one end of that column. It therefore follows that we can obtain a tighter upper bound

by replacing each use of the polynomial Tmid with Tside in Inequalities 4.19, 4.20, and 4.21,

and thus we deduce that

log(T ) ≤ 2Ns log

(
s2K

2

)
+

(2N − ζ)s log

[
1

K

((
N2

2N − ζ

)2

−
(
s− 2

s

)(
N2

2N − ζ

)
+K

)]
(4.23)

in analogy to Inequality 4.21. Again, we wish to know when we have a maximum at ζ = 0;

we do this with a result analogous to Theorem 4.22.

Theorem 4.24. The number of ROSAs on a chessboard with a given N ×N template is at

most 2Ns log

(
Tside

(
N

2

))
if
N

2
≥ Cside =

(s− 2) +
√

39Ks2 + (s− 2)2

2s
. In particular,

the claim holds if

N

2
≥ 1 +

√
39K + 1

2
(4.25)
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H H H H V V V V

(a)

H H H H V V V V

H H H H V V V V

H H H H V V V V

H H H H V V V V

(b)

H H H H V V V V

H H H H V V V V

H H H H V V V V

H H H H V V V V

V V V V H H H H

V V V V H H H H

V V V V H H H H

V V V V H H H H

(c)

Figure 4.5: A visual explanation for why the quartering template is optimal. Suppose that

the cell in the upper left corner is an H-cell. Then this cell begins a contiguous group of

H-cells up until the midpoint of the side of the chessboard, and the remainder of the cells in

this row must be V -cells, as in Figure 4.5(a). These V -cells must begin contiguous groups of

V -cells in their respective columns whose length is half the side length of the chessboard, just

as in Figure 4.5(b), and this forces the remainder of the template to be filled as in Figure

4.5(c). An analogous argument holds if the cell in the upper left is a V -cell.
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Proof. Similarly as in the proof of Theorem 4.22, we define Mside : [0, 2N ]→ [0,∞) by

Mside(ζ) =


2Ns log (Tside(0)) + (2N − ζ)s log

[
Tside

(
N2

2N − ζ

)/
Tmid(0)

]
0 ≤ ζ < 2N

2Ns log (Tside(0)) ζ = 2N

Then, setting y = N2/(2N − ζ), which is positive for all ζ < 2N , we have

d(Mside(ζ))

dζ
= s

[
2y2 −

(
s−2
s

)
y

y2 −
(
s−2
s

)
y +K

− log

(
y2 −

(
s−2
s

)
y +K

K

)]

= s

[
2 +

(
s−2
s

)
y − 2K

y2 −
(
s−2
s

)
y +K

− log

(
y2 −

(
s−2
s

)
y +K

K

)]

= s

[
2 +

(
s−2
s

)
y

y2 −
(
s−2
s

)
y +K

− 2
y2+y+K

K

− log

(
y2 −

(
s−2
s

)
y +K

K

)]

= s

[
2 +

(
s−2
s

)
y

y2 −
(
s−2
s

)
y +K

− 2u−1 − log(u)

]

where u = (y2 −
(
s−2
s

)
y +K)/K.

We again end up with a rational expression

F (y) =

(
s− 2

s

)
y

y2 −
(
s− 2

s

)
y +K

in the computation of the derivative ofMside that is unlike the others; unfortunately, unlike

the proof of Theorem 4.22, F (y) is positive for positive y, and so we cannot simply bound

F (y) above by zero. Nevertheless, viewing F (y) as a rational function of y, we see that the

denominator of F (y) has no (real) zeroes, and, as the degree of the numerator is less than

that of the denominator, F (y) → 0 as y → ∞. It therefore follows that the image of F (y)

is bounded above by some constant α > 0. Attempting to solve for the value of α, we have(
s− 2

s

)
y

y2 −
(
s− 2

s

)
y +K

≤ α

1

α

(
s− 2

s

)
y ≤ y2 −

(
s− 2

s

)
y +K

0 ≤ y2 −
(

1 +
1

α

)(
s− 2

s

)
y +K
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This resulting quadratic is non-negative for all y if and only if its corresponding dis-

criminant is non-positive, so we must have

[(
1 +

1

α

)(
s− 2

s

)]2

− 4K ≤ 0(
1 +

1

α

)(
s− 2

s

)
≤ 2

√
K(

1 +
1

α

)
≤ 2s

√
K

s− 2

α ≥

(
2s
√
K

s− 2
− 1

)−1

Thus, F (y) ≤ ((2s
√
K/(s − 2)) − 1)−1 for all y. This upper bound is difficult to use in

practice, so we note that, as s/(s− 2) > 1 and K > 2, 2s
√
K/(s− 2) > 2

√
2, which implies

α < 1/(2
√

2− 1), and therefore

dMside(ζ)

dζ
≤ s

[
2 + (2

√
2− 1)−1 − 2u−1 − log(u)

]
We may now continue as we did in the proof of Theorem 4.22: the bracketed expression

2 + (2
√

2 − 1)−1 − 2u−1 − log(u) is negative for all u ≥ 10.75 (see Figure 4.6), and hence

Mside is decreasing whenever

y2 −
(
s−2
s

)
y +K

K
= u ≥ 10.75 ⇐⇒ y2 −

(
s− 2

s

)
y − 9.75K ≥ 0

which holds if and only if

1

2

(s− 2

s

)
+

√(
s− 2

s

)2

+ 39K

 < 1 +
√

1 + 39K

2
≤ y

For ζ ∈ [0, 2N), we have y > N2/2N = N/2, and so, in order to ensure that Mside is

decreasing in a neighborhood of all ζ ∈ (0, 2N) (and hence ensure thatMmid is maximized

when ζ = 0), it is enough that N
2 ≥

1
2(1 +

√
1 + 39K). �
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More concretely, we can determine, just as in our remarks following Theorem 4.22, that

Theorem 4.24 holds for all N that satisfy

N

2
≥

1 +
√

39(3N) + 1

2
⇐⇒ (N − 1)2 ≥ 117N + 1

⇐⇒ N2 − 119N ≥ 0 ⇐⇒ N ≥ 119

We have thus far determined which single template of a given dimension N ×N produces

the highest number of compatible strip arrangements. However, if we are to consider all

possible strip arrangements on a chessboard, we must consider all possible N×N templates

that can be constructed over that chessboard. As there are two possible labels for each cell,

there are clearly 2N
2

possible templates, and the number of compatible strip arrangements

for each such template is bounded above by the expression in Theorem 4.22, assuming N

is sufficiently large. Therefore, we are finally ready to give an upper bound for the number

of ROSAs on a square chessboard of dimension L× L:

0.5 2.5 4.5 6.5 8.5 10.5 12.5

−0.2

0.2

0.4

0.6

0.8

1

Figure 4.6: A graph of the function g(w) = 2 + (2
√

2− 1)−1 − 2w−1 − log(w) showing that

the function is indeed negative for w ≥ 10.75. As we noted in Figure 4.4, one may also

argue by showing that g is decreasing for all w > 2, and then compute that g(10.75) < 0.
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Theorem 4.26. Let L be a positive integer, and let s be an integer divisor of L.

1. If N = L/s ≥ 46, then T (L,L) ≤ 2N
2
(Tmid(N/2))2Ns, or, equivalently,

log T (L,L) ≤ N2 log 2 (4.27)

+2Ns log

[
s2

2

((
N

2

)2

+

(
N

2

)
+ 3N − 2− 3N − 4

s

)]
≤ Mmid(s)

=
L2

s2
log 2 + 2L log

[
L2 − 12L+ (14L+ 16)s− 8s2

8

]
(4.28)

2. If N = L/s ≥ 119, then T (L,L) ≤ 2N
2
(Tside(N/2))2Ns, or, equivalently,

log T (L,L) ≤ N2 log 2 (4.29)

+2Ns log

[
s2

2

((
N

2

)2

−
(
s− 2

s

)(
N

2

)
+ 3N − 2− 3N − 4

s

)]
≤ Mside(s)

=
L2

s2
log 2 + 2L log

[
L2 − 8L+ (10L+ 16)s− 8s2

8

]
(4.30)

4.4 A Logarithmic Upper Bound for All ROSAs:

The Optimum Mesh for a Template

Theorem 4.26 holds for all pairs of integers L and s that satisfy the requisite condition

for whichever bound one wishes to use. We would, of course, want to improve this result

to give as small of an upper bound as possible, so, since we are initially given the length

of the board L, we would like to know what corresponding cell size s minimizes the lower

bound(s) of Theorem 4.26. Since we are again asking another optimization question that is

best solved using analytic methods, we will again relax the integer conditions, and thereby

allow s to be any real number.
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Since Inequality 4.30 represents the tighter upper bound, we will apply our analytic

methods to Mside(s). It is easily seen that Mside is a differentiable function of s in the

closed interval [1, L/119]†, so, as s ranges continuously over this interval, we find that the

optimal value of s (if it is not located at the endpoints of the target interval) must satisfy

0 =
dMside(s)

ds

0 =
−2L2

s3
log 2 + 2L

[
(10L+ 16)− 16s

(L2 − 8L) + (10L+ 16)s− 8s2

]
(4.31)

Of course, we can simplify Equation 4.31 to obtain the polynomial equation

(10L+ 16)s3 − 16s4 = (L3 log 2− 8L2 log 2)

+ (10L2 log 2 + 16L log 2)s− (8L log 2)s2 (4.32)

We may solve Equation 4.32 for s as a Puiseux series in L by using the method of

Newton polygons, as outlined by Walker [18]. However, there is one caveat: if we were

apply the method of Newton polygons to Equation 4.32 directly, the Puiseux series so

obtained would be valid only for those values of L in a neighborhood of 0. We require that

the Puiseux series be valid as L → ∞ – or as λ = 1/L → 0+ – and thus we substitute

λ = 1/L in Equation 4.32 to obtain

(10λ−1 + 16)s3 − 16s4 = (λ−3 log 2− 8λ−2 log 2)

+ (10λ−2 log 2 + 16λ−1 log 2)s− (8λ−1 log 2)s2

†We set the lower endpoint of our target interval to 1 to avoid any unnecessary subdivisions of the unit

cells. The upper endpoint of the target interval comes from the fact that Theorem 4.26 is guaranteed for

L/s ≥ 119, or, equivalently, L/119 ≥ s.
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deg s

deg λ

Figure 4.7: The Newton polygon corresponding to Equation 4.33 – that is, the convex hull

of the set of points (a, b) for which the coefficient of saλb in Equation 4.33 is non-zero.

or, equivalently, after multiplying both sides by λ3 to clear fractions,

(10λ2 + 16λ3)s3 − 16λ3s4 = (log 2− 8λ log 2)

+ (10λ log 2 + 16λ2 log 2)s− (8λ2 log 2)s2 (4.33)

and it is to Equation 4.33 that we will apply the technique of Newton polygons. Indeed,

when we construct the Newton polygon corresponding to Equation 4.33 (see Figure 4.7),

we see that its lower boundary contains a line segment with slope 2/3, which corresponds

to the (triple) solution of Equation 4.33 given by s = cλ−2/3(1 + O(λ1/3)) as λ → 0+, or

s = cL2/3(1 + O(L−1/3)) as L → ∞‡; substituting this expression of λ into Equation 4.33

and equating the coefficients of the terms of least degree, we compute more specifically that

s =
3

√
log 2

10
λ−2/3 +O(λ−1/3) =

3

√
log 2

10
L2/3 +O(L1/3)

‡The lower boundary of the Newton polygon also contains a line segment of slope 1 – this corresponds

to the solution s = (5/8)L − O(1) (of multiplicity 1), which we note is much larger than our upper bound

s ≤ L/119, and therefore this solution is extraneous to our purposes.
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We would like to explain now why this value of s gives a minimum for Mside. Since

d(Mside)/ds is continuous and has only the one zero σ = ((log 2)/10)1/3L2/3 +O(L1/3) on

the interval [1, L/119], it follows from the Intermediate Value Theorem that the derivative

must have the same sign for all s with 1 ≤ s < σ – in particular, we need only the check the

sign for s = 1. If we apply this substitution to Equation 4.32, we see that the left hand side

is a polynomial in L of degree 1, whereas the right hand side is a polynomial in L of degree 3,

and thus the right hand side is larger for sufficiently large L – this implies that d(Mside)/ds

is negative for s = 1, and therefore it is negative for all s ∈ [1, σ). Similarly, d(Mside)/ds

must have the same sign for all s with σ < s ≤ L/119, so we need only check the sign

for s = L/119. Applying this substitution to Equation 4.32 gives the left hand side as a

polynomial in L of degree 4 and the right hand side as a polynomial in L of degree 3, which

implies that d(Mside)/ds is positive for s = L/119, and therefore it must be positive for all

s ∈ (σ, L/119]. Putting these results together with the First Derivative Test of elementary

calculus, we conclude that σ gives the absolute minimum value for Mside on [1, L/119].

Therefore, combining this result with Theorem 4.26 gives the following upper bound of

the number T (L,L) of ROSAs on the L × L chessboard that depends only on L and no

other auxiliary parameters:

Theorem 4.34. For sufficiently large L (namely, for L > ((log 2)/10)(119)3),

log T (L,L) ≤ L2 log 2[
3

√
log 2
10 L2/3 +O(L1/3)

]2 + 2L log

(
L2 +O(L5/3)

8

)

≤ (L2 log 2)

 3

√(
10

log 2

)2

L−4/3 +O(L−5/3)


+2L log

(
L2

8

)
+ 2L log(1 +O(L−1/3))

≤ 4L logL+ 3
√

100 log 2L2/3 +O(L1/3)− 2L log 8 + LO(L−1/3)

≤ 4L logL− 2L log 8 +O(L2/3)
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4.5 A Logarithmic Lower Bound

Let us take a moment to reflect on our progress so far. We obtained the upper bound

of Theorem 4.34 for T (L,L) from Theorem 4.1 by taking a maximum with respect to the

number of H-cells in the rows of a template (and the number of V -cells in the columns)

and taking the minimum with respect to the size s of the cells. By reversing this process,

we can obtain a lower bound for T (L,L).

We begin the search for a lower bound for T (L,L) by noting that, in each case, Ex-

pression 4.2 of Theorem 4.1 is a quadratic polynomial in s with positive coefficients, and

therefore the value of the expression is increasing for positive s. It therefore follows that

Expression 4.2 is minimized for positive integers s when s = 1 – in other words, the number

T of ways to place a horizontal row in a single row of a ROSA compatible with a template

corresponding to the sequences {a0, . . . } and {b0, . . . } satisfies

T ≥ 1 +
∑
j≥0

(
aj + 1

2

)

It is easily seen that the polynomial g(x) =
(
x+1

2

)
= 1

2x(x+ 1) is a convex function (as are

all quadratic functions that have a positive leading coefficient). It therefore follows from

the convex form of Jensen’s Inequality that, if J is the number of non-zero terms in the

sequence {a0, . . . }, then

T ≥ 1 +
∑
j≥0

(
aj + 1

2

)
≥ 1 + J

(
(A/J) + 1

2

)
= 1 + 1

2A((A/J) + 1)

where A =
∑
aj is the number of H-cells in the row (as above).
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Considering all rows of the chessboard together, the previous result implies that the

number T H of ways to place horizontal strips anywhere in a ROSA satisfies

T H ≥
(

1 + J1

(
(A1/J1) + 1

2

))(
1 + J2

(
(A2/J2) + 1

2

))
. . .

(
1 + JL

(
(AL/JL) + 1

2

))

or, equivalently,

log T H ≥ log

(
1 +

1

2
A1

(
A1

J1
+ 1

))
+ log

(
1 +

1

2
A2

(
A2

J2
+ 1

))
+ · · ·+ log

(
1 +

1

2
AL

(
AL
JL

+ 1

))
(4.35)

where Aj denotes the total number of H-cells, and Jj denotes the number of contiguous

groups of H-cells, in row j of some compatible template (or, what amounts to the same

since the cells have side length s = 1, Aj denotes the number of unit squares in row j that

are covered by a horizontal strip in some ROSA).

Inequality 4.35 must hold for all templates (or all ROSAs), so we can improve our

result by determining the maximum value for this lower bound. First, we note that, as in

the argument for the upper bound, the number of ways to lay a horizontal strip is greatest

when the H-cells are consolidated into a single contiguous group. Thus, we may set Jj = 1

for all j, which gives

log T H ≥ log

(
1 +

(
A1 + 1

2

))
+ log

(
1 +

(
A2 + 1

2

))
+ · · ·+ log

(
1 +

(
AL + 1

2

))

Next, we recall Theorem 4.6, which implies that the polynomial 1 + 1
2x(x + 1) is logarith-

mically concave for x > 1
2(−1 +

√
7) – and in particular for x ≥ 1. We may assume that

Aj ≥ 1 for all j – or, equivalently, that the number H of H-cells in the template is at least L

– since having any row of a template be devoid of H-cells only serves to decrease the lower

bound of Inequality 4.35, and therefore Theorem 4.6 allows us to apply Jensen’s Inequality

to deduce that log T H ≥ L log

(
1 +

(
(H/L) + 1

2

))
.
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Surely, the above results also hold for vertical strips and V -cells. Taking the results for

horizontal strips and vertical strips together, we see that

T (L,L) ≥ L log

(
1 +

(
(H/L) + 1

2

))
+ L log

(
1 +

(
(V/L) + 1

2

))
(4.36)

where H and V are the number of H-cells and V -cells respectively in some compatible

template. Similarly to the previous argument, Inequality 4.36 must hold for all templates.

We recall that Inequality 4.35 was maximized when H ≥ L and (similarly) V ≥ L, or when

we have H/L ≥ 1 and V/L ≥ 1. Thus, H/L and V/L lie in the interval of log-concavity, so

we may invoke Jensen’s Inequality once more to sharpen our lower bound as follows:

Theorem 4.37. For any positive integer L,

T (L,L) ≥ 2L log

(
1 +

(
(L2/2L) + 1

2

))
≥ 2L log

(
1 +

(
(L/2) + 1

2

))
≥ 2L log

(
1 +

L

4
+
L2

8

)
≥ 2L log

(
L2

8

)
+ 2L log

(
8

L2
+

2

L
+ 1

)
≥ 4L logL− 2L log 8 +O(1)

One can also arrive at Theorem 4.37 in a more direct manner. We recall that we obtained

the upper bound of Theorem 4.34 by considering all templates on the chessboard (with an

optimum fixed cell side length) at once. It can be easily seen that no single template is

compatible with all ROSAs on a given chessboard, so it is enough for a lower bound to

consider a single template (of a minimum cell side length), and one can tighten this lower

bound by determining which template is compatible with the maximum number of strip

placements. But we already determined in the previous arguments that the template that

admits the most strip arrangements is the quartered template (see Inequality 4.23 and the

preceding discussion); using Theorem 4.1 to count the number of compatible ROSAs gives

the exact same lower bound as we have in Theorem 4.37 (see Figure 4.8).
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H H H H V V V V

H H H H V V V V

H H H H V V V V

V V V V H H H H

V V V V H H H H

V V V V H H H H

V V V V H H H H

(
1 +

(
1+L/2

2

))L/2

(
1 +

(
1+L/2

2

))L/2

(
1 +

(
1+L/2

2

))L/2

(
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(
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2

))L/2
Figure 4.8: If each quadrant of the quartering pattern contains only horizontal or vertical

strips respectively, there are (1 +
(

1+L/2
2

)
)L/2 ways to place strips in each quadrant, so that

T (L,L) ≥ [(1+
(

1+L/2
2

)
)L/2]4 = (L

2

8 )2L(1+ 2
L + 8

L2 )2L, or log T (L,L) ≥ 2L log(L2/8)+O(1).

4.6 Conclusion

Taking the results of Theorem 4.34 and Theorem 4.37 together, we conclude with a

concise estimate for T (L,L) for sufficiently large L:

Corollary 4.38. For all sufficiently large L, log T (L,L) = 4L logL− 2L log 8 +O(L2/3).

It is natural to compare this result with the asymptotic formula of Theorem 2.29, which

implies that log T (m,n) = 2n logm + m log n + O(n), and therefore seems to suggest that

log T (n, n) = 3n log n+O(n), which would contradict Theorem 4.38. However, the sugges-

tion is false, as the two results apply to different situations. Theorem 4.38 applies to the

regime in which both sides of the chessboard are nearly equal (or indeed are exactly equal),

whereas Theorem 2.29 concerns the case where one side is (much) larger than another.
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The above discussion also suggests that, as n → ∞, the asymptotic value of T (n, n) is

greater than that of T (m,n) for any fixed value of m. This suggestion is true, and follows

from the facts that T (m,n) = T (n,m) and T (m, j) < T (m, k) if j < k. While both of

these facts are evident from the definition of ROSAs, we note that the latter fact that

T (m, j) < T (m, k) if j < k – which is equivalent to T (m, k) < T (m, k + 1) for all m and k

– can also be proven by the arguments in Chapter 2, regarding the generating functions as

analytic objects. Indeed, an application of Leibniz’s differentiation formula to the result of

Theorem 2.13 shows that

F (k+1)
0 (x) = wm(0)xT (k+1)

m (x) + (k + 1)wm(0)T (k)
m (x)

or, equivalently,

T (m, k) =
T (k)
m (0)

k!
=

(
1

wm(0)

)
F (k+1)

0 (0)

(k + 1)!

The claim that the coefficients T (m, k) of Tm(x) are increasing is thus equivalent to the

claim that the coefficients of F0(x) are increasing, which follows from Equation 2.14, as the

eigenvalues of Dm ·Am are greater than 1 (or equal to 1).

Thus, we should not directly compare the asymptotic formula of Theorem 2.29 to that of

Theorem 4.38, but rather we should try to understand how the former result transitions into

the latter. We hope to pursue this in future research, and we hope that such understanding

will take us closer to an exact formula for all ROSAs on any chessboard.
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APPENDIX A

EXACT FORMULAS FOR T (M,N) FOR SOME FIXED VALUES OF m

We list closed form expressions for the generating functions Tm(x) =
∑

n≥0 T (m,n)xn

for m = 1, 2, 3, 4, 5, 6, and from these we deduce exact formulas for the number T (m,n) of

ROSAs on an m× n chessboard for m ∈ {1, 2, 3, 4, 5, 6} and any integer n ≥ 0.

The following results were obtained using the transfer matrix methods of Chapter 2,

and were computed using Maple [1], making particular use of the native LinearAlgebra

library. We will list all of the corresponding Maple code in Appendix B.
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Theorem A.1. The generating function T1(x) for the sequence {T (1, n)}n≥0 whose n-th

term is the number of ROSAs on a 1× n chessboard is given by

T1(x) =
1

1− x
− 1

1− 2x
+

1

(1− 2x)2

and hence T (1, n) = 1 + n2n for all non-negative integers n.

Theorem A.2. The generating function T2(x) for the sequence {T (2, n)}n≥0 whose n-th

term is the number of ROSAs on a 2× n chessboard is given by

T2(x) =
1

1− x
− 2

1− 2x
+

2

(1− 2x)2
+

2

1− 4x
− 3

(1− 4x)2
+

1

(1− 4x)3

and hence T (2, n) = 1 + (2n)2n + n24n for all non-negative integers n.

Theorem A.3. The generating function T3(x) for the sequence {T (3, n)}n≥0 whose n-th

term is the number of ROSAs on a 3× n chessboard is given by

T3(x) =
25

16(1− x)
− 1012

25(1− 2x)
+

36

25(1− 2x)2

+
1881

32(1− 3x)
− 783

32(1− 3x)2
+

9

2(1− 3x)3

− 1760

81(1− 4x)
− 224

27(1− 4x)2
+

128

81(1− 4x)3

+
2113189

64800(1− 7x)
− 1673

7200(1− 7x)2
− 2083

135(1− 7x)3
+

8

(1− 7x)4

and hence T (3, n) has the closed form

T (3, n) =
25

16
+ 2n

(
−1012

25
+

36(n+ 1)

25

)
+ 3n

(
1881

32
− 783(n+ 1)

32
+

9

2

(
n+ 2

2

))
+ 4n

(
−1760

81
− 224(n+ 1)

27
+

128

81

(
n+ 2

2

))
+ 7n

(
2113189

64800
− 1673(n+ 1)

7200
− 2083

135

(
n+ 2

2

)
+ 8

(
n+ 3

3

))
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Theorem A.4. The generating function T4(x) for the sequence {T (4, n)}n≥0 whose n-th

term is the number of ROSAs on a 4× n chessboard is given by

T4(x) =
361

100(1− x)
− 889462264

2460375(1− 2x)
− 315256

18225(1− 2x)2

+
396241821

524288(1− 3x)
− 10115667

65536(1− 3x)2
+

117009

2048(1− 3x)3

+
9243898448

175039(1− 4x)
− 25070512

83349(1− 4x)2
+

174080

3969(1− 4x)3

− 645442475

93312(1− 5x)
+

3481425

15552(1− 5x)2
− 833225

1296(1− 5x)3
+

12325

108(1− 5x)4

− 471969631259

2985984000(1− 7x)
− 476738297

3317760(1− 7x)2

− 28448567

276480(1− 7x)3
+

453691

13824(1− 7x)4

+
74906009752781929

619431631257600(1− 11x)
+

28362110652389

12290310440(1− 11x)2

− 1706381921

97542144(1− 11x)3
− 606371

5376(1− 11x)4
+

1225

24(1− 11x)5

and hence T (4, n) has the closed form

T (4, n) =
361

100
− 2n

(
889462264

2460375
+

315256(n+ 1)

18225

)
+ 3n

(
396241821

524288
− 10115667(n+ 1)

65536
+

117009

2048

(
n+ 2

2

))
+ 4n

(
9243898448

175039
− 25070512(n+ 1)

83349
+

174080

3969

(
n+ 2

2

))
+ 5n

(
−645442475

93312
+

3481425(n+ 1)

15552
− 833225

1296

(
n+ 2

2

)
+

12325

108

(
n+ 3

3

))
+ 7n

(
−471969631259

2985984000
− 476738297(n+ 1)

3317760

−28448567

276480

(
n+ 2

2

)
+

453691

13824

(
n+ 3

3

))
+ 11n

(
74906009752781929

619431631257600
+

28362110652389(n+ 1)

12290310440

−1706381921

97542144

(
n+ 2

2

)
− 606371

5376

(
n+ 3

3

)
+

1225

24

(
n+ 4

4

))
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Theorem A.5. The generating function T5(x) for the sequence {T (5, n)}n≥0 whose n-th

term is the number of ROSAs on a 5× n chessboard is given by

T5(x) =
50794129

4410000(1− x)
− 137556123392

40186125(1− 2x)
− 223857488

893025(1− 2x)2

+
148867530544920501

9358868480000(1− 3x)
− 1475040687111

899891200(1− 3x)2
+

485636735

1081600(1− 3x)3

− 99055890145

1750329(1− 4x)
− 88861373

83349(1− 4x)2
− 644416

1323(1− 4x)3
+

162

(1− 4x)4

+
715046863218175

15027990912(1− 5x)
+

1205382331925

683090496(1− 5x)2

− 2968531375

1724976(1− 5x)3
− 1643825

8712(1− 5x)4

+
5450984070174819449

2176782336000(1− 7x)
+

495995672525759

4031078400(1− 7x)2

+
403278349649

22394880(1− 7x)3
− 591001397

373248(1− 7x)4
+

30625

54(1− 7x)5

− 191132077579526

66976875(1− 8x)
+

48096536294

212625(1− 8x)2

− 1275364

81(1− 8x)3
− 770872

405(1− 8x)4
+

2800

3(1− 8x)5

+
376491725085404151707

129048256512000000(1− 11x)
− 46677175268317

348364800000(1− 11x)2

− 66157062419459

33868800000(1− 11x)3
− 418777788539

362880000(1− 11x)4
+

141933

400(1− 11x)5

− 772416754180034937152181

1871578285234454671875(1− 16x)
+

716240720294675465017

290843556368990625(1− 16x)2

+
66713198326386532

32283667040625(1− 16x)3
− 23060586782

79633125(1− 16x)4

+
3604456

3375(1− 16x)5
+

6776

15(1− 16x)6
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and hence T (5, n) has the closed form

T (5, n) =
50794129

4410000
− 2n

(
137556123392

40186125
+

223857488(n+ 1)

893025

)
+ 3n

(
148867530544920501

9358868480000
− 1475040687111(n+ 1)

899891200
+

485636735

1081600

(
n+ 2

2

))
+ 4n

(
−99055890145

1750329
− 88861373(n+ 1)

83349
− 644416

1323

(
n+ 2

2

)
+ 162

(
n+ 3

3

))
− 5n

(
−715046863218175

15027990912
− 1205382331925(n+ 1)

683090496

+
2968531375

1724976

(
n+ 2

2

)
+

1643825

8712

(
n+ 3

3

))
+ 7n

(
5450984070174819449

2176782336000
+

495995672525759(n+ 1)

4031078400

+
403278349649

22394880

(
n+ 2

2

)
− 591001397

373248

(
n+ 3

3

)
+

30625

54

(
n+ 4

4

))
+ 8n

(
−191132077579526

66976875
+

48096536294(n+ 1)

212625

−1275364

81

(
n+ 2

2

)
− 770872

405

(
n+ 3

3

)
+

2800

3

(
n+ 4

4

))
+ 11n

(
376491725085404151707

129048256512000000
− 46677175268317(n+ 1)

348364800000

− 66157062419459

33868800000

(
n+ 2

2

)
− 418777788539

362880000

(
n+ 3

3

)
+

141933

400

(
n+ 4

4

))
+ 16n

(
−772416754180034937152181

1871578285234454671875
+

716240720294675465017(n+ 1)

290843556368990625

+
66713198326386532

32283667040625

(
n+ 2

2

)
− 23060586782

79633125

(
n+ 3

3

)
+

3604456

3375

(
n+ 4

4

)
+

6776

15

(
n+ 5

5

))
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Theorem A.6. The generating function T6(x) for the sequence {T (6, n)}n≥0 whose n-th

term is the number of ROSAs on a 6× n chessboard is given by

T6(x) =
57336304661476

1191317675625(1− x)
− 49434478326603281111

1350253800000000(1− 2x)
− 42920736964541

14288400000(1− 2x)2

+
289148595708570003559691

1083699434877696000(1− 3x)

− 141385889626275326701

5292793332736000(1− 3x)2
+

13696900458281

4783105600(1− 3x)3

− 2645965612135793

1640558367(1− 4x)

− 2977793528827

121522842(1− 4x)2
− 20405090828

964467(1− 4x)3
+

5305520

729(1− 4x)4

− 2847865871363641947846627475

537931516706927082432(1− 5x)
+

80625952997878739684825

68491407780357408(1− 5x)2

+
1560964221378025

198194920308(1− 5x)3
− 341441519975

16328466(1− 5x)4

+
635053933560827133

81920000000(1− 6x)
− 1557923106134457

409600000(1− 6x)2

+
22073970059037

20480000(1− 6x)3
− 20325884319

102400(1− 6x)4
+

2573829

128(1− 6x)5

+
2006227081107167951244107

183666009600000000(1− 7x)
− 493786003365351402307

204073344000000(1− 7x)2

− 48638110422833663347

51018336000000(1− 7x)3
− 994707046236211

18895680000(1− 7x)4
+

32238668

2187(1− 7x)5

− 1114140880200435616

32162295375(1− 8x)
+

3947416877923936

1531537875(1− 8x)2

+
4210309471808

4862025(1− 8x)3
− 31373341696

138915(1− 8x)4
+

49655552

1323(1− 8x)5

− 4993691901767511925

72589644288(1− 10x)
− 1220019361300625

61725888(1− 10x)2
− 5461808845775

1524096(1− 10x)3

+
667650265525

979776(1− 10x)4
− 943461575

2916(1− 10x)5
+

4217125

108(1− 10x)6

+
42145743638499301417463519

86416243200000000(1− 11x)
+

14639496900753572678629

480090240000000(1− 11x)2

− 1952674788019889

21168000000(1− 11x)3
− 23303950898989

226800000(1− 11x)4
+

29796768

240000(1− 11x)5
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− 2968054223097158473361

7149540234375(1− 12x)
+

1192657008611987

99041250(1− 12x)2
+

7490951878742

5359375(1− 12x)3

− 5880158106

21875(1− 12x)4
− 29796768

4375(1− 12x)5
+

1232352

125(1− 12x)6

+
2023448547209369648842610923648

8843207397732798324609375(1− 16x)
+

171560975824218770750336

2617592007320915625(1− 16x)2

− 69394049115058901248

7844931090871875(1− 16x)3
− 961903204820992

32251415625(1− 16x)4

− 134972240896

9021375(1− 16x)5
+

1338681344

273375(1− 16x)6

− 392048382986379022828633974892889997419

2244663082527760654173388800000000(1− 22x)

− 98660174530130167777591455853151

6549553812230860919040000000(1− 22x)2

+
5239836055374741998127487637

128744484981686784000000(1− 22x)3
+

12589604972385012251

581509303200000(1− 22x)4

− 7325375745431

1518142500(1− 22x)5
− 58691576

4725(1− 22x)6
+

5120

(1− 22x)7

and hence T (6, n) has the closed form

T (6, n) =
57336304661476

1191317675625
− 2n

[
49434478326603281111

1350253800000000
+

42920736964541(n+ 1)

14288400000

]
+ 3n

[
289148595708570003559691

1083699434877696000

−141385889626275326701(n+ 1)

5292793332736000
+

13696900458281

4783105600

(
n+ 2

2

)]
+ 4n

[
−2645965612135793

1640558367
− 2977793528827(n+ 1)

121522842

−20405090828

964467

(
n+ 2

2

)
+

5305520

729

(
n+ 3

3

)]
− 5n

[
2847865871363641947846627475

537931516706927082432
− 80625952997878739684825(n+ 1)

68491407780357408

−1560964221378025

198194920308

(
n+ 2

2

)
+

341441519975

16328466

(
n+ 3

3

)]
+ 6n

[
635053933560827133

81920000000
− 1557923106134457(n+ 1)

409600000

+
22073970059037

20480000

(
n+ 2

2

)
− 20325884319

102400

(
n+ 3

3

)
+

2573829

128

(
n+ 4

4

)]
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+ 7n
[

2006227081107167951244107

183666009600000000

− 493786003365351402307(n+ 1)

204073344000000
− 48638110422833663347

51018336000000

(
n+ 2

2

)
−994707046236211

18895680000

(
n+ 3

3

)
+

32238668

2187

(
n+ 4

4

)]
+ 8n

[
−1114140880200435616

32162295375
+

3947416877923936(n+ 1)

1531537875

+
4210309471808

4862025

(
n+ 2

2

)
− 31373341696

138915

(
n+ 3

3

)
+

49655552

1323

(
n+ 4

4

)]
+ 10n

[
−4993691901767511925

72589644288
− 1220019361300625(n+ 1)

61725888

− 5461808845775

1524096

(
n+ 2

2

)
+

667650265525

979776

(
n+ 3

3

)
−943461575

2916

(
n+ 4

4

)
+

4217125

108

(
n+ 5

5

)]
+ 11n

[
42145743638499301417463519

86416243200000000

+
14639496900753572678629(n+ 1)

480090240000000
− 1952674788019889

21168000000

(
n+ 2

2

)
−23303950898989

226800000

(
n+ 3

3

)
+

29796768

240000

(
n+ 4

4

)]
+ 12n

[
−2968054223097158473361

7149540234375
+

1192657008611987(n+ 1)

99041250

+
7490951878742

5359375

(
n+ 2

2

)
− 5880158106

21875

(
n+ 3

3

)
−29796768

4375

(
n+ 4

4

)
+

1232352

125

(
n+ 5

5

)]
− 16n

[
−2023448547209369648842610923648

8843207397732798324609375

− 171560975824218770750336(n+ 1)

2617592007320915625

+
69394049115058901248

7844931090871875

(
n+ 2

2

)
+

961903204820992

32251415625

(
n+ 3

3

)
+

134972240896

9021375

(
n+ 4

4

)
− 1338681344

273375

(
n+ 5

5

)]
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+ 22n
[
−392048382986379022828633974892889997419

2244663082527760654173388800000000

− 98660174530130167777591455853151(n+ 1)

6549553812230860919040000000

+
5239836055374741998127487637

128744484981686784000000

(
n+ 2

2

)
+

12589604972385012251

581509303200000

(
n+ 3

3

)
− 7325375745431

1518142500

(
n+ 4

4

)
−58691576

4725

(
n+ 5

5

)
+ 5120

(
n+ 6

6

)]
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APPENDIX B

MAPLE CODE FOR CONSTRUCTING TRANSFER MATRICES

In this appendix, we provide the Maple code used to construct the transfer matrices

that were used to compute the results of Chapter 3 and Appendix A.

First, we consider the unweighted adjacency matrices Am for ROSAs. These were com-

puted using the Maple procedure

AdjacencyMatrix := proc(m)

if m ≤ 0 then

return LinearAlgebra :− IdentityMatrix(1)

else

return LinearAlgebra :− KroneckerProduct(AdjacencyMatrix(m− 1),

LinearAlgebra :−Matrix([[1, 1, 0], [0, 1, 1], [0, 0, 1]]))

end if

end proc

Unweighted adjacency matrices Ãm for URSAs were computed similarly, only substituting

the matrix [[1, 1, 0], [0, 1, 1], [0, 0, 1]] with the matrix [[1, 1, 0], [1, 1, 1], [1, 1, 1]].
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To construct the diagonal weight matrices, we first construct the necessary weights. We

do so by measuring the distances between each unit square in the column in state 1, and

then sum the number of ways to place a horizontal strip between these squares in state 1,

counting the empty square only once. The corresponding code is as follows.

RosaWeight := proc(m,x)

local j, r, y := x, sum := 1, count := 0;

for j from 0 to m− 1 do

r := y mod 3;

if r = 1 then

sum := sum+ (count · (count+ 1)/2);

count := 0;

else

count := count+ 1;

end if ;

y := (y − r)/3;

end do;

return sum+ (count · (count+ 1)/2);

end proc;

The weight matrix Dm for ROSAs can be constructed from the previous procedure thusly:

RosaWeightMatrix := proc(m)

local i, v = [];

for i from 0 to 3m − 1 do

v := [op(v), op(RosaWeight(m, i))]

end do;

return LinearAlgebra :− DiagonalMatrix(v);

end proc;
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Alternatively, we can construct the weighted adjacency matrix Dm ·Am using a modular

approach. We noted in Chapter 2 that the weight of a column (or a vertex of a digraph) is

determined by the states in that column. The transitions are also determined by the states in

the column; for example, the allowed transitions for a square in state 0 are given by the first

row of the single row adjacency matrix A1. Since a column corresponds to a independent

m-tuple, the allowed transitions for the entire column is then given by Kronecker product

of these single row transitions. We therefore compute Dm · Am by computing the weight

and the allowed transitions of each column simultaneously, and summing the products over

all possible columns. To make this procedure more general, we take as additional matrices

A, B, and C, which are intended to denote the single row transfers from a square in state 0,

1, and 2 respectively. Thus, if A is the matrix with zeroth row [1, 1, 0], B is the matrix with

first row [0, 1, 1], and C is the matrix with second row [0, 0, 1] (and zeroes in all other rows),

we would obtain Dm ·Am. However, with other values of A, B, and C, we may investigate

certain other results, such as the ansatz given at the end of Chapter 2 for obtaining the

asymptotic formula from the exact results. The procedure thus described is given on the

following page.
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RosaTransferMatrix := proc(m,A,B,C)

local i, j, x, r, sum, count, M, T ;

T := LinearAlgebra :− ZeroMatrix(3m);

for i from 0 to 3m − 1 do

sum := 1;

count := 0;

M := LinearAlgebra :− IdentityMatrix(1);

x := i;

for j from 0 to m− 1 do

r := x mod 3;

if r = 1 then

sum := sum+ (count · (count+ 1)/2);

count := 0;

M := LinearAlgebra :− KroneckerProduct(M,B)

else

count := count+ 1;

if r = 0 then

M := LinearAlgebra :− KroneckerProduct(M,A)

else

M := LinearAlgebra :− KroneckerProduct(M,C)

end if ;

end if ;

x := (x− r)/3;

end do;

sum := sum+ (count · (count+ 1)/2);

T := T + sum ·M ;

end do;

end proc;
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We now turn to procedures that construct matrices for URSAs. We noted that the

procedure to compute the unweighted adjacency matrix Ãm is very much the same as that

for ROSAs, where we merely replace the single row adjacency matrix A1 for ROSAs with

the single row adjacency matrix Ã1 for URSAs.

For the weights of URSAs, we could use an exact formula for the number of ways to

place vertical strips between horizontal strips in a column. However, here, we exploit the

fact that these numbers are the coefficients of a certain rational generating function.

UrsaWeight := proc(m,x)

local j, r, y := x, prod := 1, count := 0;

for j from 0 to m− 1 do

r := y mod 3;

if r 6= 0 then

prod := prod · eval
(

1

(count)!
· diff

(
1− z

1− 3z + z2
, [z$count]

)
, z = 0

)
;

count := 0;

else

count := count+ 1;

end if ;

y := (y − r)/3;

end do;

return prod · eval
(

1

(count)!
· diff

(
1− z

1− 3z + z2
, [z$count]

)
, z = 0

)
;

end proc;

Thus, a procedure for constructing the matrix D̃m of weights for URSAs is

UrsaWeightMatrix := proc(m)

local i, v := [];

for i from 0 to 3m − 1 do

v := [op(v), op(UrsaWeight(m, i))]

end do;

return LinearAlgebra :− DiagonalMatrix(v);

end proc;
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Similar to the case of ROSAs, we conclude with a procedure that computes the weighted

adjacency matrix D̃m · Ãm by computing the weight of and the transfers from each column

(or vertex of the digraph) simultaneously given single row transfer matrices A, B, and C

from states 0̃, 1̃, and 2̃ respectively.

UrsaTransferMatrix := proc(m,A,B,C)

local i, j, x, r, prod, count, M, T := LinearAlgebra :− ZeroMatrix(3m);

for i from 0 to 3m − 1 do

prod := 1;

count := 0;

M := LinearAlgebra :− IdentityMatrix(1);

x := i

for j from 0 to m− 1 do

r := x mod 3;

if r 6= 0 then

prod := prod · eval
(

1

(count)!
· diff

(
1− z

1− 3z + z2
, [z$count]

)
, z = 0

)
;

count := 0;

if r = 1 then

M := LinearAlgebra :− KroneckerProduct(M,B)

else

M := LinearAlgebra :− KroneckerProduct(M,C)

end if ;

else

count := count+ 1;

M := LinearAlgebra :− KroneckerProduct(M,A)

end if ;

x := (x− r)/3;

end do;

prod := prod · eval
(

1

(count)!
· diff

(
1− z

1− 3z + z2
, [z$count]

)
, z = 0

)
;

T := T + prod ∗M ;

end do;

return T ;

end proc;
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