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L-statistics play prominent roles in various research areas
and applications, including development of robust statisti-
cal methods, measuring economic inequality and insurance
risks. In many applications the score functions of L-statistics
depend on parameters (e.g., distortion parameter in insur-
ance, risk aversion parameter in econometrics), which turn
the L-statistics into functions that we call L-functions. A
simple example of an L-function is the Lorenz curve. Ra-
tios of L-functions play equally important roles, with the
Zenga curve being a prominent example. To illustrate real
life uses of these functions/curves, we analyze a data set
from the Bank of Italy year 2006 sample survey on house-
hold budgets. Naturally, empirical counterparts of the pop-
ulation L-functions need to be employed and, importantly,
adjusted and modified in order to meaningfully capture situ-
ations well beyond those based on simple random sampling
designs. In the processes of our investigations, we also in-
troduce the L-process on which statistical inferential results
about the population L-function hinges. Hence, we provide
notes and references facilitating ways for deriving asymp-
totic properties of the L-process.
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1. INTRODUCTION

Linear combinations of order statistics, commonly known
as L-statistics, and their numerous variations and general-
izations have played notable roles in diverse areas of appli-
cation such as measuring economic inequality and insurance
risks, deriving premium calculation principles.

Guided by econometric and actuarial applications, and
also by a mathematical point of view, in this paper we an-
alyze L-statistics and arrive at their extensions and gen-
eralizations that satisfy interesting properties and open up
∗Corresponding author.
†Research supported by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada.

venues for further applications and research in the area. To
illustrate the richness and beauty of L-statistics, and to also
provide a natural background for the introduction of what
we call the L-function in Section 2, we first have a closer
look at several examples.

Suppose we are interested in the distribution of incomes
in a society. We randomly select n individuals from the
society and record their incomes, which are non-negative
real numbers assuming that we do not take into account
their debts. Hence, we are dealing with outcomes of n non-
negative random variables (rv’s)

(1) X1, X2, . . . , Xn.

Obviously, the arithmetic mean X̄ = n−1
∑n

i=1 Xi can
hardly convey much useful information, particularly in view
of the fact that statistical populations in this context are
usually skewed. On the other hand, the median or, more
generally, percentiles are more informative measures. They
can be represented using the order statistics

(2) X1:n ≤ X2:n ≤ · · · ≤ Xn:n

of rv’s (1). From the mathematical point of view, by order-
ing rv’s (1) we have obtained a monotone sequence and thus
extracted additional information from rv’s (1). We may go
one step further and extract convexity from the rv’s by con-
sidering the sequence of lower partial sums n−1

∑k
i=1 Xi:n,

1 ≤ k ≤ n. This naturally takes us back to the work of
Lorenz [57] from where the so-called Lorenz curve originates.
We shall come back to this and other related curves in later
sections.

Similarly to the above noted econometric context, actu-
aries frequently measure insurance risks, calculate premi-
ums and thus, among many other things, deal with loss
rv’s X1, X2, . . . , Xn. They are, in many situations, non-
negative rv’s, just like the earlier noted incomes. However,
and contrary to the econometric context, the focus of ac-
tuaries is on large losses, and thus on large order statistics
of the X’s. This point of view naturally leads to the se-
quence of upper partial sums n−1

∑n
i=k Xi:n, 1 ≤ k ≤ n.

Naturally, there is a duality between the lower and up-
per partial sums, expressed in the form of the equation
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n−1
∑k

i=1 Xi:n = X̄ − n−1
∑n

i=k+1 Xi:n, and we shall en-
counter this duality in various forms later in this paper.

The lower and upper partial sums of order statistics (2)
are of course special cases of the L-statistic

(3)
1
n

n∑
i=1

ci,nXi:n,

where the coefficients ci,n are chosen by the researcher, or
decision maker, depending on the problem at hand. We re-
fer to Chernoff, Gastwirth and Johns [13] for classical ex-
amples and asymptotic results related to L-statistic (3). For
recent contributions in the area with heavy-tailed popula-
tion distributions, which play an important role in modeling
actuarial risks, we refer to Necir and Boukhetala [62], Necir,
Meraghni and Meddi [63], Necir and Meraghni [64]. Later
in the present paper, we shall discuss additional examples
and variations of the L-statistic. At this moment we only
note that L-statistic (3) accommodates numerous indices
of economic inequality as well as risk measures of actuarial
science, especially those that are related to the distorted ex-
pectation theory or, in other words, Yaari’s [93] dual theory
of choice under risk (see, e.g., Kaas, Goovaerts, Dhaene and
Denuit [53]; Denuit, Dhaene, Goovaerts and Kaas [27]).

When accommodating risk measures under the classi-
cal utility theory, we encounter averages n−1

∑n
i=1 h(Xi:n),

where h is a utility function. This naturally leads to the
more general statistic

(4)
1
n

n∑
i=1

ci,nh(Xi:n),

where the coefficients ci,n and the function h are usually
chosen by the researcher, or decision maker. L-statistic (4)
encompasses risk measures in the classical utility theory
and also a number of those related to Yaari’s dual the-
ory of choice under risk (see Section 2.6 in Denuit, Dhaene,
Goovaerts and Kaas [27] for notes and references on the
topic). L-statistic (4) has also frequently and naturally ap-
peared in the theory of statistics as discussed in the books
by, e.g., Serfling [84], Shorack [87], Shao [86].

We may naturally wish to add to the class of L-statistics
other ones such as the Cramér–von Mises, Anderson-
Darling, and Watson statistics. This leads to the following
sum of functions of order statistics

(5)
1
n

n∑
i=1

hi,n(Xi:n),

which is called the FL-statistic in Zitikis [96, 97], where dif-
ferentiability of the cumulative distribution function (cdf)
of the statistic is investigated in the context asymptotic ex-
pansions (see, e.g., Helmers [44] for a background). As we
have already hinted at above, the FL-statistic encompasses
a very large class of statistics (see Zitikis, [96, 97]). For a

far-reaching analysis of the FL-statistic, we refer to Borisov
and Baklanov [7], Baklanov and Borisov [8, 3], where the
authors call statistic (5) the generalized L-statistics.

The generalized L-statistic in the above noted papers by
Baklanov and Borisov should not, however, be confused with
the generalized L-statistic, which is also known as the GL-
statistic, that has been extensively studied by Serfling [83],
Helmers, Janssen and Serfling [46, 47], Helmers and Ruym-
gaart [45], Gilat and Helmers [35], Putt and Chinchilli [74],
Serfling [85]; see also references therein. The GL-statistic is
of the form

(6)
1

m(n)

m(n)∑
i=1

ci,m(n)Wi:m(n),

where the order statistics W1:m(n), W2:m(n), . . . , Wm(n):m(n)

are not those of the original sample but of rv’s
W1, W2, . . . , Wm(n) that are generated from the original
sample X1, X2, . . . , Xn using a specially designed mecha-
nism. We refer to Serfling [83] for the definition of this mech-
anism, as well as for examples illustrating the encompassing
nature of the GL-statistic, which includes L-, U - and many
other statistics.

Actuarial and econometric problems related to portfolio
theory have suggested other generalizations of L-statistics.
One of such generalizations is the nested L-statistic, called
also the NL-statistic, introduced by Brazauskas, Jones, Puri
and Zitikis [10]. In a way, the NL-statistic is related to the
GL-statistic, since it is of a similar (6) form:

(7)
1
m

m∑
i=1

ci,mRi:m,

where R1:m ≤ R2:m ≤ · · · ≤ Rm:m are the order statis-
tics of Ri, 1 ≤ i ≤ m, which are L-statistics (3) based on
{X1(i), X2(i), . . . , Xni(i)}, 1 ≤ i ≤ m.

Another generalization of L-statistic (4) concerns with
the situation when the rv’s X1, X2, . . . , Xn are ordered
according not to their own values, which would lead to
the usual order statistics X1:n ≤ X2:n ≤ · · · ≤ Xn:n,
but according to the ordered values of other rv’s, say
Y1, Y2, . . . , Yn. Namely, suppose that we have n paired rv’s
(X1, Y1), . . . , (Xn, Yn). We order the pairs so that the result-
ing n pairs have non-decreasing second coordinates Y1:n ≤
Y2:n ≤ · · · ≤ Yn:n. Denote the corresponding first coordi-
nates by

(8) X(1:n), X(2:n), . . . , X(n:n),

which are called induced order statistics (see Bhattacharya
[6]) or concomitants of order statistics (see, David [16] and
[17], David and Nagaraja [18], references therein). Certainly,
when Yi = Xi for all 1 ≤ i ≤ n, then the induced order
statistics X(i:n), 1 ≤ i ≤ n, coincide with the corresponding
usual order statistic Xi:n, 1 ≤ i ≤ n. Having thus defined
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the induced order statistics, we next generalize, for example,
L-statistic (3) as follows:

(9)
1
n

n∑
i=1

ci,nX(i:n).

Statistic (9) is frequently called the induced L-statistic.
Large sample asymptotic properties of statistic (9) have
been investigated by, for example, Bhattacharya [6], Seoh
and Puri [82], Davydov and Egorov [21, 22], Rao and Zhao
[77, 78]; see also references therein. For applications of the
induced order statistics in econometrics and particularly
in portfolio management, we refer to Schechtman, Shelef,
Yitzhaki and Zitikis [80] as well as to the references therein.

We have by now seen a rich mosaic of L-statistics, but
more applications, examples, and extensions will follow. We
have organized the rest of the paper as follows. In Section 2
we introduce and justify the introduction of what we call the
L-function, which encompasses numerous L-statistics and
curves that have been used for measuring economic inequal-
ity and insurance risks. Section 3 devoted to a substantial
application of L-functions (e.g., Lorenz and Zenga curves)
in the analysis of a data set from the Bank of Italy year
2006 sample survey on household budgets. There we clearly
see the importance of extending statistical inferential re-
sults from simple random sapling designs (i.e., the ‘classi-
cal’ i.i.d. assumption) to much more complex, and thus rel-
evant in practice, sampling designs. In Section 4 we discuss
indices of economic inequality whose definitions are based
on the Lorenz curve, which is yet another example of the
L-function. Since the L-function depends on the population
cdf, which is unknown, in Section 5 we define an empirical L-
function and, based on it, discuss methods for deriving sta-
tistical inferential results about the population L-function.
Section 6 concludes the paper with a brief summary of main
contributions.

2. L-FUNCTION

We can depict the lower and upper partial sums of or-
der statistics (2) using the stepwise functions n−1

∑[tn]
i=1 Xi:n

and n−1
∑n

i=[tn]+1 Xi:n, respectively, defined for all 0 ≤
t ≤ 1. The latter two sums can be written as the in-
tegrals

∫ [tn]/n

0
F−1

n (s)ds and
∫ 1

[tn]/n
F−1

n (s)ds, respectively,
where F−1

n (s) denotes the empirical quantile function inf{x :
Fn(x) ≥ s} corresponding to the empirical cdf Fn(x) =
n−1

∑n
i=1 1{Xi ≤ x}, where 1 is the indicator function. Re-

placing the limit of integration [tn]/n in the two integrals by
t, which modifies the two integrals by asymptotically (when
n → ∞) negligible terms, we turn the integrals into contin-
uous functions

ALCn(t) =
∫ t

0

F−1
n (s)ds

and DALCn(t) =
∫ 1

t
F−1

n (s)ds, that are called, respectively,
the empirical absolute Lorenz curve (ALC) and the dual
of the ALC, which we simply denote by DALC. The du-
ality between the two curves is expressed by the equation
ALCn(t) = X̄ − DALCn(t).

The corresponding population ALC and DALC are

ALCF (t) =
∫ t

0

F−1(s)ds

and DALCF (t) =
∫ 1

t
F−1(s)ds, where F−1(s) = inf{x :

F (x) ≥ s} is the population quantile function. Obviously,
ALCF (t) = μF − DALCF (t), where μF = E[X].

In the actuarial literature (see, e.g., Denuit, Dhaene,
Goovaerts and Kaas [27]), the quantile F−1(s) is frequently
considered a risk measure, called value-at-risk and denoted
by VaR[X, t].

The curves ALCF (t) and DALCF (t) can be unified into
one function LF : [0, 1] → [0,∞] defined by

LF (t) =
∫ 1

0

F−1(s)K(s, t)ds,

which we call the L-function. The kernel K : [0, 1]× [0, 1] →
[0,∞] is specified by the researcher depending on the prob-
lem at hand. To illustrate the L-function, note that when
K(s, t) = 1{s ≤ t}, then LF (t) = ALCF (t), and when
K(s, t) = 1{s > t}, then LF (t) = DALCF (t). Other exam-
ples of the L-function are conditional versions of the ordi-
nary ALC and its dual counterpart defined, respectively, by
the equations

ABCF (t) =
1
t

∫ t

0

F−1(s)ds

and DABCF (t) = (1− t)−1
∫ 1

t
F−1(s)ds, and called the ab-

solute Bonferroni curve (ABC) and the dual of the ABC
(i.e., DABC). These curves are L-functions with the ker-
nels, respectively, K(s, t) = t−11{s ≤ t} and K(s, t) =
(1 − t)−11{s > t}. Another example of the L-function is
the proportional hazards transform (PHT), which is LF (t)
with the kernel K(s, t) = t/(1 − s)1−t.

Note 1. Using mathematical terminology, the curve
ABCF (t) is the Hardy transform of the quantile func-
tion F−1(t). In the actuarial literature (see, e.g., Denuit,
Dhaene, Goovaerts and Kaas [27]), ABCF (t) is usually
called the tail value-at-risk (TVaR) risk measure and de-
noted by TVaR[X, t]. The risk measure is closely related
to the conditional tail expectation (CTE) risk measure
CTE [X, t] = E[X|X > F−1(t)]. Indeed, when the cdf F (x)
is continuous, then the TVaR and CTE risk measures coin-
cide.

Note 2. There are numerous examples when the kernel
K(s, t) does not depend on the parameter t. In such cases we
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simply denote the kernel by J(s). This turns the L-function
LF (t) into the parameter

RF =
∫ 1

0

F−1(s)J(s)ds,

which is linked to L-statistic (3) in the following way.
Namely, when the sample size n grows indefinitely, L-
statistic (3) with the coefficients

ci,n = n

∫ i/n

(i−1)/n

J(s)ds

converges (see, e.g., Serfling [84] and references therein) to
the limit RF . The function J(s) is usually called the score,
or weight, function. Several examples of the function J(s)
follow.

Example 1. When J(s) ≡ 1, then RF is the population
mean μF . The area beneath ALCF (t) but above the x-axis
is RF with J(s) = 1 − s. The area beneath ABCF (t) is RF

with J(s) = log(1/s). The absolute Gini index AGF is twice
the area between the absolute Lorenz curve ALCF (t) and
the ‘egalitarian’ line IF (t) = tμF . Hence, AGF is RF with
J(s) = 2s − 1; thus the equation

(10) AGF =
∫ 1

0

F−1(s)(2s − 1)ds.

Note 3. Viewing LF (t) and RF as risk measures in an
actuarial context, Jones and Zitikis [52] suggest, and jus-
tify, finding a ‘distortion’ parameter t such that the equa-
tion LF (t) = RF holds. To solve the problem, Jones and
Zitikis [52] specify conditions under which a unique solu-
tion, say t0, to the equation exists, and then construct an
empirical estimator tn for t0 as a solution to the equation
Ln(t) = Rn, which is an empirical counterpart to the equa-
tion LF (t) = RF . Jones and Zitikis [52] also investigate
the asymptotic distribution of tn when the sample size n
increases indefinitely.

For deeper understanding of the L-function LF (t), and to
also get another point of view about its role in actuarial and
econometric applications, we rewrite the function as follows:

(11) LF (t) =
∫ ∞

0

κ(1 − F (x), t)dx,

where the kernel κ : [0, 1] × [0, 1] → [0,∞] is defined by the
equation

κ(v, t) =
∫ v

0

K(1 − u, t)du.

(To prove equation (11), apply the definition of κ(v, t) on
the right-hand side of equation (11) and use the Fubini the-
orem.) Depending on the problem, the role of the kernel
κ(v, t) is to emphasize or, de-emphasize, the tail of the sur-
vival function S(x) = 1−F (x), thus making LF (t) larger or
smaller than the mean μF .

Example 2. In the context of indices of economic inequal-
ity, the function κ(v, t) frequently satisfies the property
κ(1, t) = 0. To illustrate, we take the kernel K(s, t) = 2s−1,
which leads to the absolute Gini index AGF (see equation
(10)). We have κ(v, t) = v(1 − v) and thus κ(1, t) = 0.

Example 3. In the context of actuarial risk measures, the
function κ(v, t) frequently satisfies the property κ(1, t) =
1. For example, consider the TVaR kernel K(s, t) = (1 −
t)−11{s > t}, in which case we have that

κ(v, t) =

{ v

1 − t
, when v < 1 − t,

1, when v ≥ 1 − t.

For the PHT kernel K(s, t) = t/(1 − s)1−t, we have that
κ(v, t) = vt. In the two cases we obviously have κ(1, t) = 1.

Note 4. Since K(s, t) is non-negative, the function v �→
κ(v, t) is non-decreasing. This property together with
κ(0, t) = 0 and, when it holds, κ(1, t) = 1 imply that, for ev-
ery ‘distortion’ parameter t ∈ (0, 1), the function v �→ κ(t, v)
is a ‘distortion’ function.

Note 5. When κ(v, t) ≥ v, which is satisfied by the TCE
and PHT kernels (see Example 3), then we have the loading
property (see, e.g., Denuit, Dhaene, Goovaerts and Kaas
[27]) for the ‘risk measure’ LF (t). The property means that
the bound LF (t) ≥ μF holds.

In addition to equation (11), it is also instructive to
express the L-function LF (t) by the equation LF (t) =
E[F−1(U)K(t, U)], where U denotes a uniform rv on [0, 1].
Consequently, we have the equation

(12) LF (t) = κ(1, t)μF + Cov[F−1(U), K(t, U)].

The next two illustrate the use of the above representation
in econometric and actuarial contexts.

Note 6. Assuming κ(1, t) = 0, we see that equation (12) be-
comes LF (t) = Cov[F−1(U), K(t, U)], which is a covariance
representation for the L-function. We refer to Schechtman
and Zitikis [79] and also to references therein for details on
covariance representations for the S-Gini index.

Note 7. In view of equation (12), when κ(1, t) = 1,
then we have the loading property for LF (t) if and only
if Cov[F−1(U), K(t, U)] ≥ 0. Using a general result by
Lehmann [55], the latter condition is satisfied when the func-
tion s �→ K(s, t) is non-decreasing.

Inspired by the research of Zenga [94], who introduces
and justifies the use of the ratio ABCF (t)/DABCF (t), we
next introduce a ratio L-function, that we simply call RL-
function, defined by the equation

RLF (t) =

∫ 1

0
F−1(s)K1(s, t)ds∫ 1

0
F−1(s)K2(s, t)ds

.

The RL-function encompasses a number of curves. For ex-
ample, when K1(s, t) = 1{s ≤ t} and K2(s, t) = 1, then

230 F. Greselin, M. L. Puri and R. Zitikis



RLF (t) becomes the Lorenz curve

(13) LCF (t) =
1

μF

∫ t

0

F−1(s)ds

(see Note 8 for details). When K1(s, t) = t−11{s ≤ t} and
K2(s, t) = (1 − t)−11{s > t}, then 1 − RLF (t) is Zenga’s
[94] curve (see Note 9 for details).

Note 8. The notion of Lorenz curve appeared in Lorenz
[57] and was later formalized in the form of equation (13) by
Pietra [68] (see Giorgi [39] for historical notes). Gastwirth’s
[29] research initiated a revival of the Lorenz curve and, in
turn, of many other curves and indices. Beyond economet-
ric applications, the Lorenz curve has been used in many
other areas of research and application, including actuarial
science, geography, health sciences and law.

Note 9. As we have noted above, Zenga’s [94] curve ZF (t)
is equal to 1 − RLF (t) when K1(s, t) = t−11{s ≤ t} and
K2(s, t) = (1 − t)−11{s > t}. Hence, we have the equation

ZCF (t) = 1 − ABCF (t)
DABCF (t)

with the earlier defined absolute Bonferroni curve ABCF (t)
and the dual of it DABCF (t). The ratio of these two Bon-
ferroni curves takes on values in [0, 1] for every t ∈ (0, 1),
and thus Zenga’s curve ZCF (t) also takes on values in [0, 1].
When the random variable X is equal to a constant almost
surely, then the quantile F−1(s) is also equal to the con-
stant for every s ∈ (0, 1) and thus ZCF (t) = 0 for every
t ∈ (0, 1), meaning ‘zero inequality’ or ‘egalitarian society’.
The other extreme scenario is when, loosely speaking, there
is only one member of the society who possesses the entire
wealth of the society, and in this case ZCF (t) = 1 for every
t ∈ (0, 1). To make the latter statement precise, consider a
sample of size n with n− 1 values being equal to 0 and only
one, the largest, equal to xn:n > 0. In this case Fn(x) = 0
for all x < 0, Fn(x) = (n − 1)/n for all 0 ≤ x < xn:n, and
Fn(x) = 1 for all x ≥ xn:n. Zenga’s curve corresponding to
the cdf F = Fn is then equal to 1 for all 0 < t < (n − 1)/n
and (n − 1)/(nt) for all (n − 1)/n ≤ t < 1. Obviously now,
when the sample size n tends to infinity (meaning a con-
tinuous model of the underlying population), Zenga’s curve
ZCF (t) approaches 1 at every t ∈ (0, 1), which corresponds
to the case that is often called ‘absolute inequality’ in the
research area of Economic Inequality. Given these interpre-
tations of Zenga’s curve, it is now natural to define an in-
dex of economic inequality by calculating the area beneath
Zenga’s curve:

ZF =
∫ 1

0

ZCF (t)dt.

This is the index that Zenga [94] introduced, and which since
then has been called Zenga’s (new) index of economic in-
equality. Statistical inferential results in the area have been
initiated and developed by Greselin and Pasquazzi [42].

3. ZENGA’S CURVE AND INDEX IN
ACTION: A BANK OF ITALY SURVEY

In this section we illustrate how Zenga’s curve and in-
equality index act on real data, obtained from the Bank of
Italy (see [4]). We note in passing that other interesting ap-
plications of the approach adopted in this section concern
Kenyan annual earnings [1] and the 1975–1976 UK pre-tax
and post-tax individual incomes (see [95]).

Specifically, in the present paper we work with a data set
from the Bank of Italy year 2006 sample survey on house-
hold budgets [4]. The information collected in the survey
includes demographic characteristics, housing, health, edu-
cation, employment, incomes, payment instruments, forms
of saving, non-durable and durable consumption, forms of
insurance.

We have organized this section as follows. Firstly, we dis-
cuss main features of the aforementioned data set, present
how the data has been collected, and then discuss how one
could deal with income data that refers to different fam-
ily sizes. Then we evaluate Zenga’s inequality curve and
compare it with the classical Lorenz curve based on the
same data set. Following Radaelli’s [76] developed method-
ology, we present a decomposition of a uniformity index into
‘within’ and ‘between’ terms. The decomposition preserves
the structure of the index itself and leads naturally to an
analogous decomposition for the inequality index. Finally,
we apply the decomposition in our analysis of the Bank of
Italy data set [4].

3.1 The Bank of Italy year 2006 survey

The interviews for the Bank of Italy sample survey of
Italian household incomes and wealth were conducted be-
tween March and October 2006. The sampling scheme was
the same as used in previous surveys: the sample was drawn
in two stages, with the primary sampling units being mu-
nicipalities, and the secondary ones being households.

Before selecting primary units, they were stratified by re-
gion and size. Within each stratum, the municipalities were
selected so that all those with more than 40,000 inhabitants
were automatically included (i.e., self-representing munic-
ipalities) whereas smaller towns were selected with prob-
abilities proportional to their size. The individual house-
holds to be interviewed were then selected randomly. Until
1987, surveys were conducted with time-independent sam-
ples of households (cross sections), but after 1989 samples
also included some households interviewed previously (panel
households) in order to facilitate an analysis of changes over
time.

The 2006 survey covered 7,768 households of which
3,957 (51%) were panel households. The response rate was
42% and, as usual, was higher for panel households (67%)
than for non-panel ones (30%). To reduce effects of non-
participation, a post-stratification of the sample was done
at the end of the survey by reweighing various segments of
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Figure 1. Distribution of incomes in Italy (extracted from [4]).

the population in order to align the characteristics of the
final sample to those of the population according to gen-
der, age group, geographical area, size of the municipality
of residence (see [4, p. 36] for details). From the items in the
questionnaire, main economic aggregates such as net dispos-
able income and net wealth were calculated.

In our present analysis we deal with the net household
income, which is the sum of payroll income (net wages and
salaries, fringe benefits), pensions and net transfers (pen-
sions, arrears, financial assistance, scholarships, alimony and
gifts); we refer to [4, p. 41] for aggregation details. In all the
computations that follow we consider the weights wi > 0,
i = 1, . . . , 7,768, with the sum

∑
wi = 7,768. The weights

are supplied by the central Bank of Italy for each household,
and they take into account probabilities of inclusion in the
sample and non-participation.

It should be noted that the net household income X
could be negative since paid alimony and gifts were sub-
tracted when forming the income. In the 2006 survey this
happened for two households, whose overall relative weight
was 1.227851 or, in other words, 0.002%. These households
were then discarded in order to deal with only non-negative
values. For the remaining 7,766 households, the re-scaled
weights w′

i, i = 1, . . . , 7,766, were calculated, with a negli-
gible correction incorporated to get the sum

∑
w′

i equal to
the number of households, that is, to 7,766.

The distribution of the household incomes (see Fig. 1;
extracted from [4]) shows the usual asymmetric form with a
relatively low frequency of very low incomes, a bulge around
medium–low incomes, and a progressively lower frequency
for higher incomes. For completeness of the discussion, we
note that the non-parametric estimate of the distribution
density in Fig. 1 was obtained using the standard normal
kernel function and the bandwidth selected according to
the criterion minimizing the asymptotic value of the mean
squared error. To obtain more robust results, the values be-
low the 1st and above the 99th percentiles were set equal
to the respective percentiles (windsorized estimates). A de-
scription of this technique can be found in, for example,
Silverman [89].

Note that about 20% of the households had annual in-
comes less than e 15,334, and a half of the households had
incomes less than e 26,062. Approximately 10% of the most
affluent households had incomes over e 55,712. The likeli-
hood of being in the right tail of the distribution increased
significantly for households whose head had a university de-
gree, was between 51 and 65 of age, self-employed, and lived
in the North or Center regions.

To deal correctly with the data, we need to keep in mind
that household income is a measure that does not take into
account the number of household members, and per capita
income does not reflect consumption among members of the
same family. To correct these shortcomings, the degree of
inequality and poverty can be measured by adjusting the
total household income according to an equivalence scale.
The result, called equivalent income, is obtained as the ratio
between the total household income and a scale coefficient.
The equivalent income is therefore the income that each in-
dividual of a household would need if she/he had lived alone
maintaining the same standard of life that she/he enjoys as
a member of the household.

Following almost all Bank of Italy studies so far, in the
present study we use the modified OECD (Organisation
for Economic Co-operation and Development) equivalence
scale, which assigns 1 to the household head, 0.5 to the other
adult members of the household, and 0.3 to the members un-
der 14 years of age (see Brandolini and Cipollone [9], and
references therein). An alternative approach is due to Cutler
and Katz [15], who proposed using the scale coefficient

(14) CK = [(#adults) + (#children)α]β

with some parameters α, β ∈ (0, 1]. To compare the modified
OECD and Cutler-Katz scales, see Table 1. In general, dif-
ferent equivalence scales can affect the inequalities between
groups with the same number of household components, but
they do not modify inequality within those groups. An in-
teresting application would be to consider sub-populations
composed of families of same size and then compare the in-
equality among the groups. However, for the sake of clarity
and simplicity, in the present study we restrict ourselves to a
decomposition into only three groups. In any case, it is use-
ful to keep in mind that different equivalence scales produce
only slight changes in the coefficients, as we see in Table 1.

3.2 Zenga’s curve for the Bank of Italy year
2006 survey equivalent incomes

We begin our study of the Bank of Italy data set by
evaluating the so-called uniformity and inequality curves,
whose definitions are given below. As a consequence, the
Zenga inequality curve and index will be calculated, and
then compared with the Lorenz curve and the Gini index.
But to this end, we first need to introduce notation, starting
with a general set-up of data given in Table 2, where nij

is the frequency of the value xi in subgroup j. Note that
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Table 1. The modified OECD and Cutler-Katz scale
coefficients

Scale coefficients

Family # of # of Modified CK CK
size adults children OECD α = 1.0 α = 0.5

β = 0.7 β = 0.8

1 1 1.0 1.00 1.00

2 2 0 1.5 1.62 1.74
1 1 1.3 1.62 1.38

3 3 0 2.0 2.16 2.41
2 1 1.8 2.16 2.08
1 2 1.6 2.16 1.74

4 4 0 2.5 2.64 3.03
3 1 2.3 2.64 2.72
2 2 2.1 2.64 2.41
1 3 1.9 2.64 2.08

5 5 0 2.5 2.64 3.03
4 1 2.3 2.64 2.72
3 2 2.1 2.64 2.41
2 3 1.9 2.64 2.08
1 4 1.9 2.64 2.08

6 6 0 2.5 2.64 3.03
5 1 2.3 2.64 2.72
4 2 2.1 2.64 2.41
3 3 1.9 2.64 2.08
2 4 1.9 2.64 2.08
1 5 1.9 2.64 2.08

Table 2. The distribution of X in the case of c subgroups

X 1 . . . j . . . c Row total

x1 n11 . . . n1j . . . n1c n1·
...

...
. . .

...
. . .

...
...

xi ni1 . . . nij . . . nic ni·
...

...
. . .

...
. . .

...
...

xr nr1 . . . nrj . . . nrc nr·
Column total n·1 . . . n·j . . . n·c N

nij = 0 if and only if the variable X does not take the value
xi in the jth subgroup.

We next split the overall frequency distribution
{(x1, n1·), . . . , (xr, nr·)} with non-negative and non-
decreasing xt into two disjoint groups: 1) the lower
group {(x1, n1·), . . . , (xi, ni·)}, which includes the first
Ni =

∑i
t=1 nt· observations, and 2) the upper group

{(xi+1, ni+1·), . . . , (xr, nr·), (x∗
r+1, 0)}, which consists of

the dual N − Ni observations; we had to include a virtual
observation x∗

r+1 with null frequency to obtain an upper
group in the case i = r.

To measure the uniformity between the lower and upper
groups, Zenga [94] has suggested the point uniformity index

Ui =

−
M i

+

M i

, i = 1, . . . , r,

where
−
M i and

+

M i are the arithmetic means

−
M i =

1
Ni

i∑
t=1

xtnt·

(
=

Qi

Ni

)
, i = 1, . . . , r,

+

M i =

⎧⎨
⎩

T − Qi

N − Ni
for i = 1, . . . , r − 1,

x∗
r+1 for i = r.

The Ui takes on values in the interval [0, 1], with the value 0
in the case of extreme inequality and 1 in the case of perfect
equality. In turn, an index of inequality can be defined as

(15) Zi =

+

M i −
−
M i

+

M i

(
= 1 − Ui

)

for i = 1, . . . , r. Zenga [94] has also proposed an inequal-
ity diagram in the unit square, which is defined for all
i = 1, . . . , r as the stepwise function with the value Zi in
the interval (pi−1, pi], where pi = Ni/N and N0 = 0.

The Zenga inequality curve for the Bank of Italy data
set is depicted in Fig. 2 (top panel). For example, the point
(0.250149, 0.654701) on the curve means that the mean in-
come of the poorest 25,01% of the household members (a
lower partial mean) is 34,53% of the mean income of the rich-
est 74,99% individuals (an upper partial mean). The curve
is U shaped and resembles the curve obtained for Dagum
distributions by Polisicchio and Porro [70], where the au-
thors also derive analytic expressions for the Zenga curve in
the case of several widely used income models. The Zenga
inequality curve can be compared to the classical Lorenz
curve, which we have depicted in Fig. 2 (bottom panel) us-
ing the same Bank of Italy data set. For instance, the point
(0.250149, 0.103293) on the Lorenz inequality curve means
that 25,01% of the poorest individuals own 10,33% of the
total income.

Note also that in Fig. 2 (top panel), the horizontal line
y = 0.658682 has been drawn to highlight the intervals of
values of pi in the graph for which the inequality measured
by Z(pi) is lower/greater than its mean value. In partic-
ular, the inequality is lower than its mean value on the
interval [0.238707, 0.891898] and reaches its minimal value
Z(pi) = 0.598743 at pi = 0.603221. As we can see, this
graph gives a more accurate representation of the inequality
in the extreme parts of the distribution.

Note 10. The horizontal line y = 0.658682 is a Zenga
curve, which corresponds to the empirical distribution com-
ing from the truncated Pareto distribution with the param-
eter θ = 0.5 (see Polisicchio [69]) since for this distribution
the inequality between the lower and the upper group is
always the same irrespectively of the ‘cutting’ value xi.

Furthermore, Zenga [94] has derived a synthetic inequal-
ity index defined as the sum of the areas beneath the in-
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Figure 2. Zenga (top) and Lorenz (bottom) inequality curves
for the Bank of Italy year 2006 family income distribution.

equality diagram, which is the weighted arithmetic mean

(16) Z =
r∑

i=1

Zi
ni·
N

of the point inequality indices Zi. Obviously, Z = 1 − U ,
where U is the uniformity index defined by

(17) U =
r∑

i=1

Ui
ni·
N

.

The Zenga inequality index Z in the case of the Bank of
Italy data set is equal to 0.658682. To compare, the value
of the Gini index is G = 0.320415, which means that the

Figure 3. Zenga inequality curves for the Bank of Italy year
2006 family income distribution.

concentration area (i.e., the area between the egalitarian
line and the Lorenz curve) is 32,04% of the concentration
area that we have in the case of absolute inequality.

We conclude this subsection by noting similarities among
the results obtained using different equivalence scales on the
Bank of Italy data set. Namely, in Fig. 3 we have depicted
the Zenga curves corresponding to equivalent incomes ob-
tained using the modified OECD and Cutler-Katz scales,
and also without using any equivalence scale. We see that
no matter what scale we use, the inequality curve changes
only slightly, whereas a substantial difference is noticeable
in the case of the raw data, that is, when no equivalence
scale is used. The latter curve would therefore result in a
misleading evaluation of the inequality, which confirms the
need for pre-treating data when income values correspond
to different family compositions.

3.3 Radaelli’s decomposition by subgroups
of the uniformity and inequality indices

Here we present Radaelli’s [76] decomposition of the uni-
formity and inequality indices and then, in the next subsec-
tion, apply it to analyze the Bank of Italy data set.

Let 0 ≤ x1 < · · · < xr denote the distinct values that the
variable X takes on all c subgroups (see Table 2 above). For
the overall distribution {(x1, n1·), . . . , (xr, nr·)}, in addition
to Ni and Qi introduced above, we define

T =
r∑

i=1

xini· (= Qr) > 0 and M =
T

N
.

Furthermore, let jNi, jQi, jT and jM denote the
analogous quantities for the jth subgroup distribution
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{(xi, nij) : i = 1, . . . , r}. Considering the jth subgroup in
Table 2, the jth lower partial mean is defined by (note that
the lower group must be non-empty)

(18) j

−
M i =

⎧⎨
⎩

jQi

jNi
when jNi > 0,

0 otherwise,

for all i = 1, . . . , r, and the jth upper mean is

j

+

M i =

⎧⎨
⎩

jT − jQi

n·j − jNi
for i = 1, . . . , rj − 1,

xr for i = rj , . . . , r,

where rj denotes the position among (1, . . . , r) of the sub-
group maximal recorded value with non-null frequency, that
is, rj = maxi=1,...,r{i : nij > 0}.

The key of Radaelli’s [76] decomposition is the point uni-
formity index

j,hUi = j

−
M i

h

+

M i

for j, h = 1, . . . , c and i = 1, . . . , r. The index allows com-
parisons within subgroups and also between two different
subgroups. Namely, when j = h, then the index j,jUi in-
volves a comparison among means within the same sub-
group, whereas for j 	= h, the index j,hUi involves a com-
parison between two different subgroups. In the definition
of j,hUi for j 	= h, the lower partial mean of the jth sub-
group (values x � xi in the subgroup j) is compared with
the upper mean of the hth subgroup (values x > xi in the
subgroup h). Hence, j,hUi with j 	= h can be interpreted as
a point cross uniformity index. The above interpretations
therefore suggest splitting the overall uniformity index into
‘within’ and ‘between’ components.

In order to examine relationship between the overall ith

point uniformity index Ui and the cross uniformity point
indices j,hUi, we first observe that the overall lower partial
mean

(19)
−
M i =

1
Ni

∑
j

j

−
M i · jNi

(
=

Qi

Ni

)

is the weighted average of the c group lower partial means
j

−
M i with weights given by the cumulative frequencies jNi,

that is, the sizes of the groups in which they are evaluated.
Second, we observe that, for i = 1, . . . , r − 1, the overall ith

upper partial mean

(20)
+

M i = (T − Qi)

( ∑
h

hT − hQi

h

+

M i

)−1 (
=

T − Qi

N − Ni

)

is the weighted harmonic mean of the group upper partial

means j

+

M i with weights hT − hQi. Substituting eqs. (19)

and (20) into the definition of Ui, we get

(21) Ui =
∑

j

∑
h

j,hUi
jNi

Ni

hT − hQi

T − Qi

for i = 1, . . . , r − 1. The overall rth point uniformity index
can be analogously decomposed as follows

(22) Ur =
∑

j

∑
h

j,hUr
n·j
N

1
c
.

Introducing the weights

hwi =

⎧⎨
⎩

hT − hQi

T − Qi
for i = 1, . . . , r − 1;

1
c for i = r

for h = 1, . . . , c, we combine eqs. (20) and (21) into

(23) Ui =
∑

j

∑
h

j,hUi
jNi

Ni
hwi

for i = 1, . . . , r. Eq. (23) expresses the overall point uni-
formity index Ui as a weighted average of the uniformities
j,hUi.

Splitting the second summation in (23) according to
whether h = j or h 	= j, we arrive at the within/between
groups decomposition

(24) Ui =
∑

j

j,jUi
jNi

Ni
jwi +

∑
j

∑
h�=j

j,hUi
jNi

Ni
hwi.

The first sum on the right-hand side of eq. (24) involves all
the uniformity indices obtained within each group, and so
the sum can be interpreted as a measure of the ‘within sub-
groups’ component of the overall point uniformity index Ui.
The second (double) sum on the right-hand side of eq. (24)
encompasses the uniformity ratios j,hUi evaluated crosswise
(h 	= j) by comparing the lower partial mean of the jth

subgroup with the upper partial mean of another subgroup,
and so it measures the ‘between subgroups’ contribution.
The decomposition of the synthetic uniformity index

U =
r∑

i=1

Ui
ni·
N

is now straightforward:

U =
∑

i

∑
j

∑
h

j,hUi
jNi

Ni
hwi

ni·
N

(25)

=
∑

i

∑
j

j,jUi
jNi

Ni
jwi

ni·
N

+
∑

i

∑
j

∑
h�=j

j,hUi
jNi

Ni
hwi

ni·
N

.
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Furthermore, denote

Ai =
∑

j

jNi

Ni
jwi,

which is the sum of the weights associated with the ‘within’
point uniformity indices j,jUi. Likewise, the dual of the
above introduced Ai is 1 − Ai, which is associated with the
weights assigned to the uniformity cross indices j,hUi, h 	= j,
evaluated between two different groups. With the above no-
tation, the uniformity index U can now be decomposed as
the weighted average (see Radaelli [75] for details)

U =
∑

i

[W Ui Ai + BUi (1 − Ai)]
ni·
N

(26)

= W U A + BU (1 − A),

where A =
∑

i Ai
ni·
N can be interpreted as the overall weight

for the uniformity indices evaluated within the same sub-
group. The dual 1 − A has an analogous meaning.

Aiming at a decomposition for the inequality indices, we
decompose Zi = 1 − Ui as follows

Zi = 1 − [W Ui Ai + BUi (1 − Ai)]
= (1 − W Ui) Ai + (1 − BUi) (1 − Ai)
= W Ii Ai + BZi (1 − Ai) .

The corresponding decomposition for the overall inequality
index becomes

Z = 1 − [W U A + BU (1 − A)](27)
= W I A + BI (1 − A) .

We are now ready to apply the above decompositions of
the inequality and uniformity indices to the Bank of Italy
income data set. This is the topic of our next subsection.

3.4 The decomposition of indices for the
Bank of Italy survey equivalent incomes

We divide the entire sample into three subgroups of
households according to geographical area: North, Center,
and South (including islands). To synthetically depict these
three exhaustive and non-overlapping subgroups, we present
some of their aggregate characteristics in Table 3, which
for each group reports the minimum, maximum, mean and
median equivalent incomes (in e), the sample and income
shares, the uniformity jU and inequality jZ indices. We see
from Table 3 that North is the biggest group (46.26%) own-
ing more than a half (53.76%) of the overall equivalent in-
come. We also see from the table that the mean and median
of the equivalent incomes slightly decrease from North to
Center, and they drastically decrease to South. Even if the
range of incomes for South is strongly lower with respect
to the range recorded for North and Center, the uniformity
indices are decreasing from North to South.

Table 3. Aggregate characteristics in each geographical area

Eqv. income North Center South Italy

Min 63.37 5.88 52.00 5.88
Max 507,556.55 811087.83 205,073.02 811,087.83
Mean 21,595.83 21,414.66 12,897.16 18,324.45

Median 18,859.53 18,282.82 11,000.00 15,802.61

Shares

Sample 0.462648 0.195347 0.342005 1
Income 0.537585 0.225085 0.237330 1

Indices

jU 0.395324 0.360710 0.355784 0.341318

jZ 0.604676 0.639290 0.644216 0.658682

Figure 4. Uniformity curves within each subgroup and for the
overall distribution of income.

To proceed with decompositions, we need slightly differ-
ent notations for ‘within’ and ‘between’ quantities, follow-
ing Radaelli’s approach. We start by evaluating the ‘within’
uniformity curves for the three subgroups. For each of them
(i.e., j = 1, 2, 3) the stepwise function with the value j,jUi

in ( jNi−1
n·j

, jNi

n·j
] is drawn for i = 1, . . . , 7,363, where 7,363

is the number of different equivalent incomes of the 7,766
observed households and jN0 = 0. The three curves, and
also the uniformity curve for the overall distribution, are
presented in Fig. 4. We glean from the figure that the three
subgroup curves keep the same order from the origin of the
axes until the 87th percentile: the North uniformity curve is
the highest, followed by the Center curve, with the South
curve being the lowest. This depicts a situation in which
the strongest inequality is observed in the South subgroup.
The ranking changes only for the upper part of the dis-
tribution. Considering, for instance, the first 95% of the
households in each geographical area, we observe that the
South uniformity ratio becomes the greatest. This means
that the ratio between the mean of the equivalent income
of the poorest 95% of South households represents a larger
fraction of the mean of the 5% of the richest households in
the South subgroup if compared with the 5% upper group
in the North and Center subgroups. In other words, within
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the South subgroup there is a higher uniformity for high
values of income. If we observe the micro data in detail, we
note that in the South subgroup the greatest equivalent in-
come is e 168,187.63, which is not far from the previous
values, whereas four highest values are found in the North:
e 216,969.24, e 230,317.86, e 284,264.91 and e 507,556.55,
which lie quite far from the median and mean incomes of the
North subgroup, as reported in Table 3. Similarly for the
Center subgroup, the four extreme values are e 221,438.43,
e 278,429.61, e 315,767.34 and e 811,087.83. The heavy
tailed distributions of the North and Center subgroups are
responsible for the crossover between the curves in the last
5th percentile.

To proceed with calculations of j,jUi for j = 1, 2, 3, we
need to specify the i values. First we note that the value
i = 4,303 is the minimum integer such that the relative cu-
mulative frequency 1Ni=4,303/n·1 is not lower than 0.5 for
the North distribution; hence, x4,303 = e 18,859.53 is the
median of the equivalent income for the North subgroup.
Analogously, for i = 4,131 we obtain x4,131 = e 18,282.82,
which is the median income of the Center subgroup. Fi-
nally, for i = 1,480 we have the median income of the
South subgroup, which is x1,480 = e 11,000.00. Analogously,
we arrive at the values i = 7,087, 7,051 and 6,108 cor-
responding to the 95th percentiles of the North, Center
and South subgroups. The ordinates of the three unifor-
mity curves corresponding to the medians and the 95th per-
centiles, are:

1,1Ui=4,303 = 0.454582 1,1Ui=7,087 = 0.159641

2,2Ui=4,131 = 0.417704 2,2Ui=7,051 = 0.282822

3,3Ui=1,480 = 0.411023 3,3Ui=6,108 = 0.304303.

These values show different rankings between the three
curves. Furthermore, note that the overall uniformity curve
is almost always lower than the subgroup uniformity curves:
it happens in the central 90% of the distribution. When
the overall curve is the lowest one, this means that income
is more uniformly distributed within each geographic area
than when joining the groups.

Note 11. One might be interested in comparing the Lorenz
curves within subgroups (Fig. 5) similarly to our above com-
parison in the case of the uniformity curves (Fig. 4). How-
ever, it seems more awkward to derive our earlier observa-
tions from the Lorenz curves. We refer to Radaelli [75] for
detailed remarks on comparing respective decompositions
by subgroups of the Gini index and the Zenga uniformity
and inequality indices.

We next evaluate the uniformities within and between
subgroups. To this end, we draw the cross uniformity curves
(j, h = 1, 2, 3) as the stepwise functions with the value j,hUi

in (xi−1; xi] for i = 1, . . . , 7,363 and x0 = 0. Specifically,
Fig. 6 depicts the uniformity curves within each subgroup

Figure 5. Lorenz curves of the three geographical areas.

Figure 6. ‘Within’ uniformity curves with values on the x-axis
in thousands of e.

j = 1, 2, 3, with the top 0.0002% of the distribution (which
corresponds to the two most extreme incomes) discarded.

Furthermore, the three curves in Fig. 7 represent the cross
uniformity curves because ‘between’ curves arise whenever
units of one subgroup are compared with units of another
subgroup. Each ‘between’ curve j,hUi provides an answer to
the question ‘How do we feel about ourselves when com-
pared to those richer than us in subgroup h?’ posed by the
units in subgroup j with incomes lower than x. For exam-
ple, the top panel in Fig. 7 has been obtained by compar-
ing lower partial means of the North households with upper
partial means of the other geographical areas. The inter-
pretation is immediate. For example, with the reference to
the top panel in Fig. 7 and focusing on the first quartile
xi=2,596 = Q1(North) = e 14,100.00 of equivalent incomes
in the North subgroup on the x axis, the ordinates of the
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Figure 7. Uniformity curves within and between subgroups
with values on the x-axis in thousands of e.

three curves are

1,1Ui=2596 = 0.419443,

1,2Ui=2596 = 0.405694,

1,3Ui=2596 = 0.488432,

respectively. That is, the mean income of the poorest
25% North households represents the 41.94%, 40.57%, and

48.84% of the mean income of the richest households in
North (within), Center, and South, respectively. Because of
the bijective relation between the index i and the income
values xi, each point in the curve can be equivalently in-
terpreted in terms of income: all northern household mem-
bers having incomes lower than e 14,100.00 own in average
41.94% of the mean income of people having incomes greater
than e 14,100.00 in the same North subgroup. Analogous
interpretation can be given for the other two ‘between’ uni-
formity curves.

A drastic change in the ordinates in these graphs can be
explained as in the following example, corresponding to the
uniformity curve between the North and South subgroups in
proximity of the income x = e 140,000. A careful inspection
of the micro data shows that in the North subgroup the lower

mean attains the value 1

−
M i = e 21,197.92 in the abscissa

x = e 141,844.88, and it increases very slowly to its final
value e 21,554.51 at x = e 315,767.34. The upper mean

3

+

M i of the South subgroup changes from e 145,665.73 to
e 205,073.02 when the last but one income is reached. This
fact results in a strong slope of the ‘between’ uniformity
curve.

As we have anticipated, each uniformity index Ui can be
decomposed according to eq. (24) into ‘within’ and ‘between’
components, and this leads to an analogous decomposition
for the overall uniformity index U (see eq. (25)). The results
of the decomposition of the ‘within’ and ‘between’ compo-
nents on the overall uniformity are (see eq. (25))

∑
j

j,jUi
jNi

Ni
jwi

ni·
N

= 0.118713

and ∑
i

∑
j

∑
h�=j

j,hUi
jNi

Ni
hwi

ni·
N

= 0.222605,

respectively. The overall uniformity index is U = 0.341318.
Hence, the ‘within’ and ‘between’ components account for
34.78% and 65.22% of the overall uniformity, respectively.
The main contribution to the overall uniformity is therefore
due to the ‘between’ component.

By expressing the overall uniformity index U as the
weighted average of the quantities W U and BU (see
eq. (26)), we obtain

U = W U · A + BU · (1 − A)

= 0.377236 · 0.314692 + 0.324824 · 0.685308

= 0.341318.

The decomposition of the overall inequality index (see
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eq. (27)) becomes

Z = 1 − 0.341318 (= 0.658682)
= W I A + BI (1 − A)
= 0.622764 · 0.314692 + 0.675176 · 0.685308
= 0.195979 + 0.462703,

which shows that the overall inequality has contributed
29.75% to the inequality within subgroups and 70.25% to
the inequality between subgroups.

4. INDICES OF ECONOMIC INEQUALITY
AND THEIR NORMALIZATION

In this section we discuss how indices of inequality and,
likewise, of equality can be constructed using functions
noted in previous sections. To this end we shall mainly use
the Lorenz curve (LC), but our considerations can easily be
adjusted to accommodate, for example, Zenga’s indices of
inequality and equality.

To start with, note that the absolute Lorenz curve
ALCF (t) is convex and takes on values 0 and μF at t = 0
and t = 1, respectively. Hence, normalizing the ALC by the
mean μF confines the curve to the triangle {(s, t) ∈ [0, 1]2 :
s ≥ t}, with the resulting curve being the LC as defined
in equation (13). This geometric interpretation implies that
every LC lies between two ‘extreme’ LC’s: O(t) from below
and I(t) from above, which are defined as follows. The lower
LC

O(t) =

{
0, t ∈ [0, 1),
1, t = 1

corresponds to the case of extreme inequality as, using eco-
nomic terminology, no one possesses any wealth except one
individual, represented by t = 1, who possesses everything,
that is, 100%. On the other hand, the upper LC

I(t) = t,

which is known in the econometric literature as the egalitar-
ian Lorenz curve, corresponds to the case of absolute equal-
ity as it is produced by every rv that takes on a constant
(non-negative) value.

Hence, in view of the bounds O(t) ≤ LCF (t) ≤ I(t)
that hold irrespectively of F (with non-negative support),
we may compare the actual Lorenz curve LCF (t) to the
egalitarian one I(t) and arrive at a measure of inequality. To
formulate the idea rigorously, denote the class of all Lorenz
curves by L and let L × I = {(LC , I) : LC ∈ L}. We call

D : L × I → [0,∞]

the ‘functional of inequality’ if the bound D(LCF , I) ≥
D(LCG, I) holds for all LCF ,LCG ∈ L such that LCF (t) ≤
LCG(t) for all t ∈ [0, 1].

When thinking about examples of the functional D :
L × I → [0,∞], we immediately realize that the maximal
distance between LCF (t) and I(t) conveys little information
about the convex body encompassed by the two curves. The
area

∫ 1

0
(t−LCF (t))dt and its various modifications, on the

other hand, have been of particular use and interest when
measuring economic inequality and thus has given rise to
a wealth of indices in the area. The aforementioned modi-
fications are based on emphasizing or de-emphasizing (de-
pending on the problem under consideration) the difference
t − LCF (t) in some regions of the unit interval [0, 1], as
follows.

In the classical utility theory and in the Yaari’s dual
theory of choice under risk, the quantile function F−1(t)
is transformed into either v(F−1(t)) with a ‘utility’ func-
tion v(t) or F−1(t)w(t) with a ‘weight’ function (see, e.g.,
Kaas, Goovaerts, Dhaene and Denuit [53], Denuit, Dhaene,
Goovaerts and Kaas [27]). Similarly, many indices of eco-
nomic inequality are obtained by transforming the function
t − LCF (t) into either v(t − LCF (t)) or (t − LCF (t))w(t),
or possibly into the combination v(t − LCF (t))w(t) of the
two.

A frequent example of v(t) is tp. Indeed, a large number
of indices of economic inequality fall into the class defined
by

(28) Dp,w(LCF , I) =
(∫ 1

0

(t − LCF (t))pw(t)dt

)1/p

.

Example 4. When p = 1 and w(t) ≡ 2 (we shall under-
stand the meaning of the ‘2’ later in this section), then the
index Dp,w(LCF , I) becomes the Gini index GF , which, af-
ter integration by parts, can be written as follows:

(29) GF =
1

μF

∫ 1

0

F−1(s)(2s − 1)ds.

The Gini index has played a central role in measuring eco-
nomic inequality since its development by Corrado Gini at
the beginning of the 20th century (for a translation Gini’s
original work, see [36]; also Giorgi [40]). For historical and
bibliographical notes on the subject we refer to Giorgi [37–
39]. Beyond econometric applications, the Gini index has
been used in many other areas of research and application,
including actuarial science, geography, mathematics, health
sciences, law and public policy.

Note 12. Comparing equations (10) and (29), we see that
GF = AGF /μF , which suggests calling GF the relative Gini
index, as opposed to the absolute Gini index AGF . This in-
terpretation of the Gini index GF invites the notion of the
ratio L-statistic, or the RL-statistic for short, which is a spe-
cial case of the earlier defined RL-function when the kernel
K(s, t) does not depend on t. The RL-statistic has been in-
troduced and analyzed by Tarsitano [90]; for special cases,
see, e.g., Atkinson [2], Maesono [58], Mimoto and Zitikis
[61].
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Note 13. The empirical Gini index is obtained by replacing
the population cdf F (x) on the right-hand side of equation
(29) by the empirical cdf Fn(x):

(30) Gn =
1

X̄n

n∑
i=1

(
2i − 1

n
− 1

)
Xi:n.

Note that Gn = Dp,w(LCn, I), where LCn(t) is the empiri-
cal Lorenz curve. For statistical inferential results related to
the empirical Gini index Gn, we refer to Gastwirth [30, 31];
see also Zitikis and Gastwirth [101] for results concerning
the S-Gini index (see Kakwani [54], Donaldson and Wey-
mark [28], Weymark [92]).

Example 5. When p = 1 and the weight function w(t)
is any, then Dp,w(LCF , I) is the Mehran [60] index, which
also appears in Nyg̊ard and Sandström [66, 67] and is
called the weighted Lorenz area. When p = 1 and w(t) =
w1(t)/

∫ 1

0
sw1(s)ds for a function w1 : [0, 1] → [0,∞],

then Dp,w(LCF , I) becomes the generalized Gini index (see
Shorrocks and Slottje [88]; Sen [81], p. 142).

Example 6. When w(t) ≡ 2p, then Dp,w(LCF , I) is the
E-Gini index

EF,p = 2
(∫ 1

0

(t − LCF (t))pdt

)1/p

of Chakravarty [12]. In fact, Chakravarty [12] introduces a
more general index by replacing tp and its inverse t1/p by
any strictly increasing function v(t) and its inverse v−1(t),
respectively. For statistical inferential theory for the E-Gini
index EF,p, see Zitikis [100] and references therein.

The reason why the Gini index GF is defined as twice
the area between the two curves I(t) and LCF (t) is to force
the index GF into the interval [0, 1] irrespectively of the cdf
F (x). Inspired by this observation, we next normalize the
index Dp,w(LCF , I) by its maximal value, which is achieved
when LCF (t) = O(t), and obtain the normalized index of
inequality

NDp,w(O,LCF , I) =
Dp,w(LCF , I)

Dp,w(O, I)
.

An illustrative example follows. (Note that from now on till
the end of this section, all the weight functions w(t) are
identically equal to 1.)

Example 7. When w(t) = 1, then NDp,w(O,LC F , I) is the
following modification

NEF,p = (p + 1)1/p

(∫ 1

0

(t − LCF (t))p
dt

)1/p

of Chakravarty’s [12] E-Gini index EF,p. We call NEF,p the
normalized E-Gini index. When p = 1, the normalized E-
Gini index NEF,p reduces to the Gini index GF .

Since neither O(t) nor I(t) depend on any cdf, it might
seem natural to construct an empirical estimator for the
index NDp,w(O,LCF , I) by replacing the population Lorenz
curve LCF by its empirical counterpart LCn(t). This route
may not, however, lead to a natural estimator since in the
case of extreme inequality, the empirical Lorenz curve is

On(t) =

{
0, t ∈

[
0, 1 − n−1

)
,

1 − n(1 − t), t ∈
[
1 − n−1, 1

]
.

In other words, for every empirical Lorenz curve LCn(t),
we have the bounds On(t) ≤ LCn(t) ≤ I(t) for every set
of non-negative rv’s of size n. Hence, it is natural to use
NDp,w(On,LCn, I) as an estimator of NDp,w(O,LCF , I).
Two illustrative examples follow (see Zitikis [99] for addi-
tional examples).

Example 8. When p = 1 and w(t) = 1, then Dp,w(On, I) =
(1 − n−1)/2 and so NDp,w(On,LCn, I) is the normalized
empirical Gini index

NGn =
1

1 − n−1
Gn,

where Gn is defined in equation (30).

Example 9. When w(t) = 1, then Dp,w(On, I) = (1 −
n−1)/(p + 1)1/p. Consequently, NDp,w(On,LCn, I) is the
empirical normalized E-Gini index

NEn,p =
(p + 1)1/p

1 − n−1

(∫ 1

0

(t − LCn(t))p
dt

)1/p

,

which is an estimator of the earlier defined normalized E-
Gini index NEF,p.

5. L-PROCESS

We have by now seen a number of examples of the L-
function LF (t), which is unknown in practice since the cdf
F (x) is generally unknown. Hence, we construct an em-
pirical estimator for LF (t) using one of the many avail-
able methods, such as parametric, Bayesian, nonparamet-
ric, or some other one. The choice of the method depends
on the data set, sample size, researchers point of view, etc.
We shall next discuss a non-parametric estimator Ln(t) of
the L-function which is defined by replacing the population
quantile F−1(s) in the definition of LF (t) by its empirical
counterpart F−1

n (s). This gives

(31) Ln(t) =
1
n

n∑
i=1

ci,n(t)Xi:n

with the coefficients

ci,n(t) = n

∫ i/n

(i−1)/n

K(s, t)ds.
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When t is fixed, or when the kernel K(s, t) does not de-
pend on t, then Ln(t) is a classical L-statistic (see equation
(3)). Various asymptotic results for the L-statistic have been
established in the literature. Indeed, essentially all the ma-
jor results that are available in the case of the sample mean
X̄ have been extended to L-statistics.

In the context of the present discussion, however, we
are particularly interested in statistical inference for the L-
function LF (t). For this we need to establish weak conver-
gence of the L-process

Λn(t) =
√

n (Ln(t) − LF (t)).

The task relies on resolving two problems. First, we need to
verify convergence of finite dimensional distributions (fdd’s)
of the L-process, which can be done using the Cramér-Wold
device and the pointwise (i.e., for each t ∈ [0, 1]) asymptotic
representation

(32) ηn(t) =
1√
n

n∑
i=1

λi(t) + oP(1),

which can be found in many proofs dealing with the central
limit theorem for the L-statistic (see Chernoff, Gastwirth
and Johns [13], Serfling [84], Shorack [87], Shao [86], refer-
ences therein).

Resolving the second problem, i.e., establishing tightness
of the measures generated by the L-processes Λn(t), n ≥ 1,
is a very complex task (see, e.g., Goldie [41]). We shall next
discuss two (among many other possible) ways for achieving
this goal, depending on whether the L-process has continu-
ous paths or not, which depends on the kernel K(s, t).

In the case of continuous paths, the following general the-
orem provides a most convenient way to establish weak con-
vergence of the L-process as it reduces the problem (and,
in particular, establishing tightness) to the verification of a
moment-type condition.

Theorem 1 (cf., e.g., Ibragimov and Has’minskii [49]). Let
ηn(t), n ≥ 1, be continuous stochastic processes defined on
[0, 1]. Let all the fdd’s of ηn(t) converge to the corresponding
fdd’s of a process η(t) when n → ∞. Assume that there are
constants α ≥ β > 1 and c ∈ (0,∞) such that, for all n ≥ 1,
we have E[|ηn(0)|α] ≤ c and

(33) E [|ηn(t) − ηn(u)|α] ≤ c|t − u|β

for all t, u ∈ [0, 1]. Then the process ηn(t) converges weakly
to η(t) when n → ∞, and the limiting process η(t) has con-
tinuous paths almost surely.

In view of the above theorem, when the L-process Λn(t)
has continuous paths, the main task is to verify condition
(33) with ηn(t) = Λn(t). Naturally, the verification is easy
(at least in the i.i.d. case) when Λn(t) admits representa-
tion (32) with the remainder term oP(1) identically equal

to zero. This happens, for example, in the case of the uni-
form empirical process

(34) en(t) =
√

n (Fn(x) − F (x)), x = F−1(t).

The remainder term oP(1) is not, however, equal to zero
in the case of the absolute Lorenz process

√
n (ALC n(t) −

ALCF (t)), which is
√

n
∫ t

0
(F−1

n (s) − F−1(s))ds. A useful
technique to circumvent the problem is to employ the gen-
eral Vervaat process (see, e.g., Zitikis [98])
(35)

Vn(t) =
∫ t

0

(F−1
n (s)−F−1(s))ds+

∫ F−1(t)

0

(Fn(x)−F (x))dx.

This is due to the fact (see statement (36) below) that Vn(t)
is asymptotically smaller than any of the two integrals on
the right-hand side of equation (35). Hence, Vn(t) can be
viewed as a remainder term in the representation of the first
integral on the right-hand side of equation (35) in terms of
the second one. Note that the second integral is equal to
−n−1

∑n
i=1 λi(t), where

λi(t) = −
∫ F−1(t)

0

(
1{Xi ≤ x} − F (x)

)
dx.

Hence, we have representation (32) for ηn(t) =√
n (ALC n(t) − ALCF (t)) with the remainder term oP(1)

uniformly in t, provided that

(36)
√

n sup
0<t<1

|Vn(t)| = oP(1),

which needs to be verified. In the next note we show how
this can be done and also provide additional insights into
the Vervaat process Vn(t).

Note 14. The Vervaat process Vn(t) has been investigated
in great detail (see, e.g., Zitikis [98], Davydov and Zitikis
[23, 24], and references therein). For a use of the Vervaat
process in a statistical analysis of the Lorenz and Bonferroni
curves, we refer to Csörgő, Gastwirth and Zitikis [14]. We
know in particular that Vn(t) is non-negative for all t ∈ [0, 1]
and satisfies the bound

(37) Vn(t) ≤ −
(
Fn(F−1(t)) − t

)(
F−1

n (t) − F−1(t)
)

for every cdf F . If, however, the cdf F (x) is continuous at
the point x = F−1(t), then t = F (F−1(t)) and so, with en(t)
defined in equation (34) and a function q(t) > 0, we have
the bound

(38)
√

nVn(t) ≤ sup
0<t<1

|en(t)|
q(t)

sup
0<t<1

q(t)
∣∣F−1

n (t)−F−1(t)
∣∣.

Choose, for example, q(t) = t1/2−ε(1 − t)1/2−ε with any
ε > 0. Then the first supremum on the right-hand side of
bound (38) is of the order OP(1). Furthermore, assuming
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that the quantile function F−1(t) is continuous and the mo-
ment E[X2+δ] is finite for some δ > 0, we can find ε > 0
such that the second supremum on the right-hand side of
bound (38) is of the order oP(1) (see Mason [59] for a gen-
eral result). Statement (36) follows.

As we have already hinted at above, some kernels K(s, t)
may not lead to L-processes with continuous paths. Since
some type of continuity assumption on the paths is needed
to at least ensure that, for example, the supremum of the
process is a rv, we assume that the paths of the the L-
process Λn(t) are right-continuous. In this case, the following
theorem by Davydov [20] is particularly helpful (see also
Davydov and Zitikis [26] for related results).

Theorem 2 (Davydov [20]). Let the processes ξn(t), n ≥
1, and ξ be defined on the interval [0, 1], and let the paths
of ξn(t) be elements of the space D[0, 1] with probability 1.
Furthermore, let all the fdd’s of ξn(t) converge (when n →
∞) to the corresponding fdd’s of the process ξ(t). Assume
that there are constants α ≥ β > 1 and c ∈ (0,∞) such that
E[|ξn(t)|α] ≤ c for all t ∈ [0, 1] and

(39) E[|ξn(t) − ξn(u)|α] ≤ c|t − u|β

for all t, u ∈ [0, 1] such that |t − u| ≥ an, where an is a
sequence converging to 0. Furthermore, assume that ξn(t)
can be written as the difference ξ◦n(t) − ξ∗n(t) of two non-
decreasing processes ξ◦n(t) and ξ∗n(t), with the process ξ∗n(t)
such that

(40) max
k=1,...,kn

|ξ∗n(tk+1) − ξ∗n(tk)| = oP(1)

when n → ∞, where kn = [1/an], tk = kan for all k =
1, . . . , kn, and tkn+1 = 1. Then the process ξn(t) converge
weakly to ξ(t) when n → ∞.

When applying Theorem 2 with ξn(t) = Λn(t), we may
not always be able to easily reduce the L-process Λn(t) to
the sum of elementary processes like we have done earlier
in the case of the empirical and absolute Lorenz processes.
When facing this difficulty, we may explore the following
route. Start with the equation

Λn(t) − Λn(u)(41)

=
∫ 1

0

√
n

(
F−1

n (s) − F−1(s)
)(

K(s, t) − K(s, u)
)
ds

and then use Hölder’s inequality. This reduces condition (39)
to showing that, for some p, q > 1 such that p−1 + q−1 = 1,
there exist constants c, δ ∈ [0,∞) such that, for all n ≥ 1,

(42) E
[( ∫ 1

0

∣∣√n (F−1
n (s) − F−1(s))

∣∣pds

)α/p]
≤ cnδ

and

(43)
1
nδ

(∫ 1

0

∣∣K(s, t) − K(s, u)
∣∣qds

)1/q

≤ c|t − u| β

for all u, t ∈ [0, 1] such that |t−u| ≥ an. This completes our
general description of how to possibly verify conditions of
Theorem 2 in the context of the L-process Λn(t).

Example 10. To illustrate conditions (42) and (43), con-
sider the absolute Lorenz process, which is the L-process
Λn(t) with the kernel K(s, t) = 1{s ≤ t}. Condition (43)
becomes equivalent to the requirement that |t − s| ≥ an

with an = n−δ/(β−1+1/p). The value of δ ≥ 0 depends on an
upper bound that we can derive for the expectation on the
right-hand side of bound (42).

In addition to the above discussed estimation of the L-
function LF (t), there is a variety of other related problems
of interest, notably the one about comparing several L-
functions LF1(t), . . . , LFK

(t). The L-functions can be com-
pared at a given point t, simultaneously for all t in the inter-
val [0, 1], or its subinterval. Solutions can be formulated in
the form of confidence intervals, confidence bands, hypothe-
sis tests. The underlying K populations may or may not be
independent.

When t is fixed, the problem reduces to comparing K ≥ 2
parameters, whose empirical estimators are L-statistics in
the non-parametric case, or functions of parameter estima-
tors in the parametric case. These are complex problems
whose solutions in various special cases can be found, for ex-
ample, in Puri [71–73], Tryon and Hettmansperger [91], and
references therein. In the case of actuarial risk measures,
these problems have been discussed by Jones and Zitikis
[50], Jones, Puri and Zitikis [51], and Brazauskas, Jones,
Puri and Zitikis [10].

Comparing K ≥ 2, or just K = 2, functions simultane-
ously for all t ∈ [0, 1] is a considerably more complex prob-
lem. Its resolution heavily relies on the theory of stochas-
tic and, in particular, empirical processes. For results, tech-
niques of proof, and references in the area, we refer to, e.g.,
Davidson and Duclos [19], Barrett and Donald [5], Hall and
Yatchew [43], Linton, Maasoumi and Whang [56], Horváth,
Kokoszka and Zitikis [48], Schechtman, Shelef, Yitzhaki and
Zitikis [80], and Brazauskas, Jones, Puri and Zitikis [11].

6. SUMMARY

In this paper we have argued that the herein introduced
L-function, which is a generalization of the L-statistic, is
a natural and useful object encompassing numerous indices
of economic inequality, actuarial risk measures, and curves
appearing in econometric and actuarial literature. We have
illustrated and justified our theoretical considerations with
a thorough analysis of a data set from the Bank of Italy
year 2006 sample survey on household budgets, and in this
way opened up a number of research avenues for practically
relevant theoretical investigations of various properties of
the L-function. Furthermore, we have noted a number of
routes for developing desired statistical inferential results
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about the population L-function and, as a by-product, in-
troduced the L-process. When discussing the asymptotic be-
haviour of the L-process, we have highlighted a particularly
useful role of the general Vervaat process as well as of two
general results on weak convergence provided by Ibragimov
and Has’minskii [49] (for continuous processes) and Davydov
[20] (for possibly discontinuous processes); see also Davydov
and Zitikis [26] for a generalization of Davydov [20] to multi-
parameter stochastic processes.
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timation: Asymptotic Theory. Springer, New York. MR0620321

[50] Jones, B. L. and Zitikis, R. (2005). Testing for the order of
risk measures: an application of L-statistics in actuarial science.
Metron 63 193–211. MR2210654

[51] Jones, B. L., Puri, M. L., and Zitikis, R. (2006). Testing hy-
potheses about the equality of several risk measure values with
applications in insurance. Insurance Math. Econom. 38 253–270.
MR2212526

[52] Jones, B. L. and Zitikis, R. (2007). Risk measures, distor-
tion parameters, and their empirical estimation. Insurance Math.
Econom. 41 279–297. MR2339569

[53] Kaas, R., Goovaerts, M. J., Dhaene, J., and Denuit, M.

(2001). Modern Actuarial Risk Theory. Kluwer Academic Pub-
lishers, Dordrecht.

[54] Kakwani, N. (1980). On a class of poverty measures. Economet-
rica 48 437–446. MR0560520

[55] Lehmann, E. L. (1966). Some concepts of dependence. Ann.
Math. Statist. 37 1137–1153. MR0202228

[56] Linton, O., Maasoumi, E., and Whang, Y.-J. (2005). Con-
sistent testing for stochastic dominance under general sampling
schemes. Rev. Econom. Stud. 72 735–765. MR2148141

[57] Lorenz, M. O. (1905). Methods of measuring the concentration
of wealth. J. Amer. Statist. Assoc. 9 209–219.

[58] Maesono, Y. (2005). Asymptotic representation of ratio statis-
tics and their mean squared errors. J. Japan Statist. Soc. 35
73–97. MR2183501

[59] Mason, D. M. (1982). Some characterizations of almost sure

bounds for weighted multidimensional empirical distributions
and a Glivenko-Cantelli theorem for sample quantiles. Z.
Wahrsch. Verw. Gebiete 59 505–513. MR0656513

[60] Mehran, F. (1976). Linear measures of income inequality.
Econometrica 44 805–809. MR0455258

[61] Mimoto, N. and Zitikis, R. (2008). The Atkinson index, the
Moran statistic, and testing exponentiality. J. Japan Statist. Soc.
38 187–205. MR2458927

[62] Necir, A. and Boukhetala, K. (2004). Estimating the risk-
adjusted premium for the largest claims reinsurance covers.
In COMPSTAT 2004–Proceedings in Computational Statistics,
pp. 1577–1584, Physica, Heidelberg. MR2173177

[63] Necir, A., Meraghni, D., and Meddi, F. (2007). Statistical esti-
mate of the proportional hazard premium of loss. Scand. Actuar.
J. 2007 147–161. MR2361123

[64] Necir, A. and Meraghni, D. (2009). Estimating L-functionals
for Heavy-Tailed Distributions and Applications. Laboratory
of Applied Mathematics Working Paper. University Mohamed
Khider, Biskra.

[65] Nyg̊ard, F. and Sandström, A. (1981). Measuring Income In-
equality. Almqvist & Wiksell, Stockholm.

[66] Nyg̊ard, F. and Sandström, A. (1988). The weighted mean
difference. Metron 46 21–31. MR1032951

[67] Nyg̊ard, F. and Sandström, A. (1989). Income inequality mea-
sures based on sample surveys. J. Econometrics 42 81–95.

[68] Pietra, G. (1915). Delle relazioni tra gli indici di variabilità (I,
II). Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti,
a.a. 1914–1915, LXXIV 775–804.

[69] Polisicchio, M. (2008). The continuous random variable with
uniform point inequality measure I(p). Statistica & Applicazioni
6 136–151.

[70] Polisicchio, M. and Porro, F. (2008). The I(p) Curve for
Some Classical Income Models. Rapporto di Ricerca del Di-
partimento di Metodi Quantitativi per le Scienze Economiche
Aziendali, Universit degli Studi di Milano - Bicocca No. 159,
available online: http://www.dimequant.unimib.it/ ricerca/

pubblicazione.jsp?id=169.
[71] Puri, M. L. (1965). Some distribution-free k-sample rank tests

of homogeneity against ordered alternatives. Comm. Pure Appl.
Math. 18 51–63. MR0175212

[72] Puri, M. L. (1965). On the combination of independent two
somple tests of a general class. Rev. Inst. Internat. Statist. 33
229–241. MR0182091

[73] Puri, M. L. (1967). Combining independent one-sample tests of
significance. Ann. Inst. Statist. Math. 19 285–300. MR0217932

[74] Putt, M. E. and Chinchilli, V. M. (2002). Estimating the
asymptotic variance of generalized L-statistics. Comm. Statist.
Theory Methods 31 733–751. MR1905142

[75] Radaelli, P. (2008). On the Decomposition by Subgroups
of the Gini’s Index and Zenga’s Uniformity and In-
equality Indexes. Rapporto di Ricerca del Dipartimento
di Metodi Quantitativi per le Scienze Economiche Azien-
dali, Universita’ degli Studi di Milano - Bicocca No. 150,
available online: http://www.dimequant.unimib.it/ ricerca/

pubblicazione.jsp?id=170.
[76] Radaelli, P. (2008). A subgroup decomposition of Zenga’s Uni-

formity and Inequality indexes. Statistica & Applicazioni 6 117–
136.

[77] Rao, C. R. and Zhao, L. C. (1995). Convergence theorems for
empirical cumulative quantile regression functions. Math. Meth-
ods Statist. 4 81–91. MR1324691

[78] Rao, C. R. and Zhao, L. C. (1996). Law of the iterated log-
arithm for empirical cumulative quantile regression functions.
Statist. Sinica 6 693–702. MR1410741

[79] Schechtman, E. and Zitikis, R. (2006). Gini indices as areas
and covariances: What is the difference between the two repre-
sentations? Metron 54 385–397. MR2354689

[80] Schechtman, E., Shelef, A., Yitzhaki, S., and Zitikis, R.

(2008). Testing hypotheses about absolute concentration curves

244 F. Greselin, M. L. Puri and R. Zitikis

http://www.ams.org/mathscinet-getitem?mr=2252510
http://www.ams.org/mathscinet-getitem?mr=1455483
http://www.ams.org/mathscinet-getitem?mr=2200970
http://www.ams.org/mathscinet-getitem?mr=1159665
http://www.ams.org/mathscinet-getitem?mr=2276053
http://www.ams.org/mathscinet-getitem?mr=2196347
http://www.ams.org/mathscinet-getitem?mr=0478267
http://www.ams.org/mathscinet-getitem?mr=2156334
http://www.ams.org/mathscinet-getitem?mr=0665747
http://www.ams.org/mathscinet-getitem?mr=0944195
http://www.ams.org/mathscinet-getitem?mr=0952995
http://www.ams.org/mathscinet-getitem?mr=1062846
http://www.ams.org/mathscinet-getitem?mr=2250178
http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=2210654
http://www.ams.org/mathscinet-getitem?mr=2212526
http://www.ams.org/mathscinet-getitem?mr=2339569
http://www.ams.org/mathscinet-getitem?mr=0560520
http://www.ams.org/mathscinet-getitem?mr=0202228
http://www.ams.org/mathscinet-getitem?mr=2148141
http://www.ams.org/mathscinet-getitem?mr=2183501
http://www.ams.org/mathscinet-getitem?mr=0656513
http://www.ams.org/mathscinet-getitem?mr=0455258
http://www.ams.org/mathscinet-getitem?mr=2458927
http://www.ams.org/mathscinet-getitem?mr=2173177
http://www.ams.org/mathscinet-getitem?mr=2361123
http://www.ams.org/mathscinet-getitem?mr=1032951
http://www.dimequant.unimib.it/_ricerca/pubblicazione.jsp?id=169
http://www.dimequant.unimib.it/_ricerca/pubblicazione.jsp?id=169
http://www.ams.org/mathscinet-getitem?mr=0175212
http://www.ams.org/mathscinet-getitem?mr=0182091
http://www.ams.org/mathscinet-getitem?mr=0217932
http://www.ams.org/mathscinet-getitem?mr=1905142
http://www.dimequant.unimib.it/_ricerca/pubblicazione.jsp?id=170
http://www.dimequant.unimib.it/_ricerca/pubblicazione.jsp?id=170
http://www.ams.org/mathscinet-getitem?mr=1324691
http://www.ams.org/mathscinet-getitem?mr=1410741
http://www.ams.org/mathscinet-getitem?mr=2354689


and marginal conditional stochastic dominance. Econometric
Theory 24 1044–1062.

[81] Sen, A. (1997). On Economic Inequality, expanded edition with
a substantial annexe by J. E. Foster and A. Sen. Clarendon Press,
Oxford.

[82] Seoh, M. and Puri, M. L. (1989). Central limit theorems un-
der alternatives for a broad class of nonparametric statistics. J.
Statist. Plann. Inference 22 271–294. MR1006164

[83] Serfling, R. J. (1984). Generalized L-, M -, and R-Statistics.
Ann. Statist. 12 76–86 MR0733500

[84] Serfling, R. J. (1980). Approximation Theorems of Mathemat-
ical Statistics. Wiley, New York. MR0595165

[85] Serfling, R. J. (2002). Robust estimation via generalized L-
statistics: theory, applications, and perspectives. In Advances on
Methodological and Applied Aspects of Probability and Statistics
(Hamilton, ON, 1998), pp. 197–217, Taylor & Francis, London.
MR1977510

[86] Shao, J. (2003). Mathematical Statistics, 2nd ed. Springer, New
York. MR2002723

[87] Shorack, G. R. (2000). Probability for Statisticians. Springer,
New York. MR1762415

[88] Shorrocks, A. F. and Slottje, D. J. (1995). Approximating
Unanimity Orderings: An Application to Lorenz Dominance,
Discussion Paper. University of Essex, Colchester.

[89] Silverman, B. W. (1993). Density estimation for Statistics and
Data Analysis. Chapman & Hall, London. MR0848134

[90] Tarsitano, A. (2004). A new class of inequality measures based
on a ratio of L-statistics. Metron 62 137–160. MR2089172

[91] Tryon, P. V. and Hettmansperger, T. P. (1973). A class of
non-parametric tests for homogeneity against ordered alterna-
tives. Ann. Statist. 1 1061–1070. MR0353560

[92] Weymark, J. A. (1980/81). Generalized Gini inequality indices.
Math. Social Sci. 1 409–430. MR0625274

[93] Yaari, M. E. (1987). The dual theory of choice under risk.
Econometrica 55 95–115. MR0875518

[94] Zenga, M. (2007). Inequality curve and inequality index based
on the ratios between lower and upper arithmetic means. Statis-
tica & Applicazioni 5 3–27.

[95] Zenga, M. (2007). Application of a new inequality curve and
inequality index based on the ratios between lower and upper
partial arithmetic means. In Proceedings of the 56-th Session of
the International Statistical Institute, Lisbon, Portugal.

[96] Zitikis, R. (1990). Smoothness of the distribution function of an
FL-statistic. I. (Russian) Litovsk. Mat. Sb. 30 233–246; trans-

lation in Lithuanian Math. J. 30 97–106. MR1082454
[97] Zitikis, R. (1990). Smoothness of the distribution function of an

FL-statistic. II. (Russian) Litovsk. Mat. Sb. 30 500–512; trans-
lation in Lithuanian Math. J. 30 231–240. MR1082476

[98] Zitikis, R. (1998). The Vervaat process. In Asymptotic Methods
in Probability and Statistics (Ottawa, ON, 1997), pp. 667–694,
North-Holland, Amsterdam. MR1661510

[99] Zitikis, R. (2002). Analysis of indices of economic in-
equality from a mathematical point of view. (Plenary
Lecture at the 11th Indonesian Mathematics Confer-
ence, State University of Malang, Indonesia, 22–25 July
2002. http://ideas.repec.org/p/pqs/wpaper/0092005.html)
Matematika 8 772–782.

[100] Zitikis, R. (2003). Asymptotic estimation of the E-Gini index.
Econometric Theory 19 587–601. MR1997934

[101] Zitikis, R. and Gastwirth, J. L. (2002). The asymptotic dis-
tribution of the S-Gini index. Aust. N. Z. J. Stat. 44 439–446.
MR1934733

Francesca Greselin
Dipartimento di Metodi Quantitativi
per le Scienze Economiche e Aziendali
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