Brackets in representation algebras of Hopf algebras

dc.contributor.authorMassuyeau, Gwenael
dc.contributor.authorTuraev, Vladimir
dc.date.accessioned2025-02-20T16:38:05Z
dc.date.available2025-02-20T16:38:05Z
dc.date.issued2018-06-11
dc.description.abstractFor any graded bialgebras $A$ and $B$, we define a commutative graded algebra $A_B$ representing the functor of $B$-representations of $A$. When $A$ is a cocommutative graded Hopf algebra and $B$ is a commutative ungraded Hopf algebra, we introduce a method deriving a Gerstenhaber bracket in $A_B$ from a Fox pairing in $A$ and a balanced biderivation in $B$. Our construction is inspired by Van den Bergh's non-commutative Poisson geometry, and may be viewed as an algebraic generalization of the Atiyah--Bott--Goldman Poisson structures on moduli spaces of representations of surface group
dc.identifier.citationMassuyeau, Gwenael, and Turaev, Vladimir. "Brackets in representation algebras of Hopf algebras." Journal of Noncommutative Geometry, vol. 12, no. 2, 2018-06-11, https://doi.org/10.4171/jncg/286.
dc.identifier.otherBRITE 4057
dc.identifier.urihttps://hdl.handle.net/2022/30633
dc.language.isoen
dc.relation.isversionofhttps://doi.org/10.4171/jncg/286
dc.relation.isversionofhttp://arxiv.org/pdf/1508.07566
dc.relation.journalJournal of Noncommutative Geometry
dc.titleBrackets in representation algebras of Hopf algebras

Files

Can’t use the file because of accessibility barriers? Contact us