A khintchine decomposition for free probability
dc.altmetrics.display | false | en |
dc.contributor.author | Williams, J.D. | |
dc.date.accessioned | 2014-11-03T19:26:42Z | |
dc.date.available | 2014-11-03T19:26:42Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Let μ be a probability measure on the real line. In this paper we prove that there exists a decomposition $\mu = \mu_{0}\boxplus \mu_{1}\dots\boxplus \mu_{n}$such that $\mu_{0}$ is infinitely divisible, and $\mu_{i}$ is indecomposable for $i \geq 1$. Additionally, we prove that the family of all $\boxplus$-divisors of a measure $\mu$ is compact up to translation. Analogous results are also proven in the case of multiplicative convolution | en |
dc.identifier.citation | Williams, J. D. (2012). A khintchine decomposition for free probability. Annals of Probability, 40(5), 2236-2263. http://dx.doi.org/10.1214/11-AOP677 | en |
dc.identifier.uri | https://hdl.handle.net/2022/19106 | |
dc.language.iso | en_US | en |
dc.publisher | Institute of Mathematical Statistics | en |
dc.relation.isversionof | https://doi.org/10.1214/11-AOP677 | en |
dc.rights | © 2012 Institute of Mathematical Statistics | en |
dc.subject | Decomposition | en |
dc.subject | Free probability | en |
dc.subject | Infinite divisibility | en |
dc.title | A khintchine decomposition for free probability | en |
dc.type | Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- euclid.aop.1349703321.pdf
- Size:
- 252.96 KB
- Format:
- Adobe Portable Document Format
Collections
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.