A khintchine decomposition for free probability

dc.altmetrics.displayfalseen
dc.contributor.authorWilliams, J.D.
dc.date.accessioned2014-11-03T19:26:42Z
dc.date.available2014-11-03T19:26:42Z
dc.date.issued2012
dc.description.abstractLet μ be a probability measure on the real line. In this paper we prove that there exists a decomposition $\mu = \mu_{0}\boxplus \mu_{1}\dots\boxplus \mu_{n}$such that $\mu_{0}$ is infinitely divisible, and $\mu_{i}$ is indecomposable for $i \geq 1$. Additionally, we prove that the family of all $\boxplus$-divisors of a measure $\mu$ is compact up to translation. Analogous results are also proven in the case of multiplicative convolutionen
dc.identifier.citationWilliams, J. D. (2012). A khintchine decomposition for free probability. Annals of Probability, 40(5), 2236-2263. http://dx.doi.org/10.1214/11-AOP677en
dc.identifier.urihttps://hdl.handle.net/2022/19106
dc.language.isoen_USen
dc.publisherInstitute of Mathematical Statisticsen
dc.relation.isversionofhttps://doi.org/10.1214/11-AOP677en
dc.rights© 2012 Institute of Mathematical Statisticsen
dc.subjectDecompositionen
dc.subjectFree probabilityen
dc.subjectInfinite divisibilityen
dc.titleA khintchine decomposition for free probabilityen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
euclid.aop.1349703321.pdf
Size:
252.96 KB
Format:
Adobe Portable Document Format
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.