A khintchine decomposition for free probability

Loading...
Thumbnail Image
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Mathematical Statistics

Abstract

Let μ be a probability measure on the real line. In this paper we prove that there exists a decomposition $\mu = \mu_{0}\boxplus \mu_{1}\dots\boxplus \mu_{n}$such that $\mu_{0}$ is infinitely divisible, and $\mu_{i}$ is indecomposable for $i \geq 1$. Additionally, we prove that the family of all $\boxplus$-divisors of a measure $\mu$ is compact up to translation. Analogous results are also proven in the case of multiplicative convolution

Description

Keywords

Decomposition, Free probability, Infinite divisibility

Citation

Williams, J. D. (2012). A khintchine decomposition for free probability. Annals of Probability, 40(5), 2236-2263. http://dx.doi.org/10.1214/11-AOP677

Journal

DOI

Link(s) to data and video for this item

Relation

Rights

© 2012 Institute of Mathematical Statistics

Type

Article