AN EDGE-CENTRIC PERSPECTIVE FOR BRAIN NETWORK COMMUNITIES

Loading...
Thumbnail Image
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.

Date

2021-05

Journal Title

Journal ISSN

Volume Title

Publisher

[Bloomington, Ind.] : Indiana University

Abstract

The brain is a complex system organized on multiple scales and operating in both a local and distributed manner. Individual neurons and brain regions participate in specific functions, while at the same time existing in the context of a larger network, supporting a range of different functionalities. Building brain networks comprised of distinct neural elements (nodes) and their interrelationships (edges), allows us to model the brain from both local and global perspectives, and to deploy a wide array of computational network tools. A popular network analysis approach is community detection, which aims to subdivide a network’s nodes into clusters that can used to represent and evaluate network organization. Prevailing community detection approaches applied to brain networks are designed to find densely interconnected sets of nodes, leading to the notion that the brain is organized in an exclusively modular manner. Furthermore, many brain network analyses tend to focus on the nodes, evidenced by the search for modular groupings of neural elements that might serve a common function. In this thesis, we describe the application of community detection algorithms that are sensitive to alternative cluster configurations, enhancing our understanding of brain network organization. We apply a framework called the stochastic block model, which we use to uncover evidence of non-modular organization in human anatomical brain networks across the life span, and in the informatically-collated rat cerebral cortex. We also propose a framework to cluster functional brain network edges in human data, which naturally results in an overlapping organization at the level of nodes that bridges canonical functional systems. These alternative methods utilize the connection patterns of brain network edges in ways that prevailing approaches do not. Thus, we motivate an alternative outlook which focuses on the importance of information provided by the brain’s interconnections, or edges. We call this an edge-centric perspective. The edge-centric approaches developed here offer new ways to characterize distributed brain organization and contribute to a fundamental change in perspective in our thinking about the brain.

Description

Thesis (Ph.D.) - Indiana University, Department of Psychological and Brain Sciences and Program in Neuroscience, 2021

Keywords

network neuroscience, brain networks, connectome

Citation

Journal

DOI

Link(s) to data and video for this item

Relation

Rights

Type

Doctoral Dissertation