Learning-accelerated discovery of immune-tumour interactions

dc.contributor.authorOzik, J
dc.contributor.authorCollier, N
dc.contributor.authorHeiland, R
dc.contributor.authorAn, G
dc.contributor.authorMacklin, Paul
dc.date.accessioned2025-02-20T15:58:44Z
dc.date.available2025-02-20T15:58:44Z
dc.date.issued2019-06-07
dc.description.abstractWe present an integrated framework for enabling dynamic exploration of design spaces for cancer immunotherapies with detailed dynamical simulation models on high-performance computing resources. Our framework combines PhysiCell, an open source agent-based simulation platform for cancer and other multicellular systems, and EMEWS, an open source platform for extreme-scale model exploration. We build an agent-based model of immunosurveillance against heterogeneous tumours, which includes spatial dynamics of stochastic tumour–immune contact interactions. We implement active learning and genetic algorithms using high-performance computing workflows to adaptively sample the model parameter space and iteratively discover optimal cancer regression regions within biological and clinical constraints.
dc.identifier.citationOzik, J, et al. "Learning-accelerated discovery of immune-tumour interactions." Molecular Systems Design & Engineering, vol. 4, no. 4, 2019-06-07, https://doi.org/10.1039/c9me00036d.
dc.identifier.issn2058-9689
dc.identifier.otherBRITE 6026
dc.identifier.urihttps://hdl.handle.net/2022/31768
dc.language.isoen
dc.relation.isversionofhttps://doi.org/10.1039/c9me00036d
dc.relation.isversionofhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690424
dc.relation.journalMolecular Systems Design & Engineering
dc.titleLearning-accelerated discovery of immune-tumour interactions

Files

Can’t use the file because of accessibility barriers? Contact us