Tetrahedral forms in monoidal categories and 3-manifold invariants

dc.altmetrics.displayfalse
dc.contributor.authorGeer, N.
dc.contributor.authorKashaev, R.
dc.contributor.authorTuraev, V.
dc.date.accessioned2014-11-03T18:29:07Z
dc.date.available2014-11-03T18:29:07Z
dc.date.issued2012
dc.description.abstractWe introduce systems of objects and operators in linear monoidal categories called $\hat{\Psi}$-systems. A $\hat{\Psi}$-system satisfying several additional assumptions gives rise to a topological invariant of triples (a closed oriented 3-manifold $M$, a principal bundle over $M$, a link in $M$). This construction generalizes the quantum dilogarithmic invariant of links appearing in the original formulation of the volume conjecture. We conjecture that all quantum groups at odd roots of unity give rise to $\hat{\Psi}$-systems and we verify this conjecture in the case of the Borel subalgebra of quantum sl$_{2}$.
dc.identifier.citationGeer, N., Kashaev, R., & Turaev, V. (2012). Tetrahedral forms in monoidal categories and 3-manifold invariants. Journal Fur Die Reine Und Angewandte Mathematik, 673, 69-123. http://dx.doi.org/10.1515/CRELLE.2011.171
dc.identifier.urihttps://hdl.handle.net/2022/19102
dc.language.isoen_US
dc.publisherDe Gruyter
dc.relation.isversionofhttps://doi.org/10.1515/CRELLE.2011.171
dc.rights© 2012 Walter de Gruyter
dc.titleTetrahedral forms in monoidal categories and 3-manifold invariants
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CRELLE.2011.171.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Can’t use the file because of accessibility barriers? Contact us