Tetrahedral forms in monoidal categories and 3-manifold invariants
dc.altmetrics.display | false | |
dc.contributor.author | Geer, N. | |
dc.contributor.author | Kashaev, R. | |
dc.contributor.author | Turaev, V. | |
dc.date.accessioned | 2014-11-03T18:29:07Z | |
dc.date.available | 2014-11-03T18:29:07Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We introduce systems of objects and operators in linear monoidal categories called $\hat{\Psi}$-systems. A $\hat{\Psi}$-system satisfying several additional assumptions gives rise to a topological invariant of triples (a closed oriented 3-manifold $M$, a principal bundle over $M$, a link in $M$). This construction generalizes the quantum dilogarithmic invariant of links appearing in the original formulation of the volume conjecture. We conjecture that all quantum groups at odd roots of unity give rise to $\hat{\Psi}$-systems and we verify this conjecture in the case of the Borel subalgebra of quantum sl$_{2}$. | |
dc.identifier.citation | Geer, N., Kashaev, R., & Turaev, V. (2012). Tetrahedral forms in monoidal categories and 3-manifold invariants. Journal Fur Die Reine Und Angewandte Mathematik, 673, 69-123. http://dx.doi.org/10.1515/CRELLE.2011.171 | |
dc.identifier.uri | https://hdl.handle.net/2022/19102 | |
dc.language.iso | en_US | |
dc.publisher | De Gruyter | |
dc.relation.isversionof | https://doi.org/10.1515/CRELLE.2011.171 | |
dc.rights | © 2012 Walter de Gruyter | |
dc.title | Tetrahedral forms in monoidal categories and 3-manifold invariants | |
dc.type | Article |
Files
Original bundle
1 - 1 of 1
Collections
Can’t use the file because of accessibility barriers? Contact us