Sequence-Defined Macrocycles for Understanding and Controlling the Build-up of Hierarchical Order in Self-Assembled 2D Arrays
Loading...
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of the American Chemical Society
Permanent Link
Abstract
Anfinsen's dogma that sequence dictates structure is fundamental to understanding the activity and assembly of proteins. This idea has been applied to all manner of oligomers but not to the behavior of cyclic oligomers, aka macrocycles. We do this here by providing the first proofs that sequence controls the hierarchical assembly of nonbiological macrocycles, in this case, at graphite surfaces. To design macrocycles with one (AAA), two (AAB), or three (ABC) different carbazole units, we needed to subvert the synthetic preferences for one-pot macrocyclizations. We developed a new stepwise synthesis with sequence-defined targets made in 11, 17, and 22 steps with 25, 10, and 5% yields, respectively. The linear build up of primary sequence (1°) also enabled a thermal Huisgen cycloaddition to proceed regioselectively for the first time using geometric control. The resulting macrocycles are planar (2° structure) and form H-bonded dimers (3°) at surfaces. Primary sequences encoded into the suite of tricarb macrocycles were shown by scanning-tunneling microscopy (STM) to impact the next levels of supramolecular ordering (4°) and 2D crystalline polymorphs (5°) at solution-graphite interfaces. STM imaging of an AAB macrocycle revealed the formation of a new gap phase that was inaccessible using only $C_3$-symmetric macrocycles. STM imaging of two additional sequence-controlled macrocycles (AAD, ABE) allowed us to identify the factors driving the formation of this new polymorph. This demonstration of how sequence controls the hierarchical patterning of macrocycles raises the importance of stepwise syntheses relative to one-pot macrocyclizations to offer new approaches for greater understanding and control of hierarchical assembly.
Description
Keywords
Citation
James R. Dobscha, Henry D. Castillo, Yan Li, Rachel E. Fadler, Rose D. Taylor, Andrew A. Brown, Colleen Q. Trainor, Steven L. Tait, and Amar H. Flood, "Sequence-defined Macrocycles for Understanding and Controlling the Build-up of Hierarchical Order in Self-assembled 2D Arrays," Journal of the American Chemical Society, 141, 17588-17600 (2019). DOI: 10.1021/jacs.9b06410
Journal
Link(s) to data and video for this item
Relation
Rights
This work is under a CC-BY license. You are free to copy and redistribute the material in any format, as well as remix, transform, and build upon the material as long as you give appropriate credit to the original creator, provide a link to the license, and indicate any changes made.
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
Type
Article