Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage
Loading...
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Date
2013-06-15
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of Applied Physiology
Permanent Link
Abstract
Hyperthermia reduces the capacity to withstand a simulated hemorrhagic challenge, but volume loading preserves this capacity. This study tested the hypotheses that acute volume expansion during hyperthermia increases cerebral perfusion and attenuates reductions in cerebral perfusion during a simulated hemorrhagic challenge induced by lower-body negative pressure (LBNP). Eight healthy young male subjects underwent a supine baseline period (pre-LBNP), followed by 15- and 30-mmHg LBNP while normothermic, hyperthermic (increased pulmonary artery blood temperature ∼1.1°C), and following acute volume infusion while hyperthermic. Primary dependent variables were mean middle cerebral artery blood velocity (MCAvmean), serving as an index of cerebral perfusion; mean arterial pressure (MAP); and cardiac output (thermodilution). During baseline, hyperthermia reduced MCAvmean (P = 0.001) by 12 ± 9% relative to normothermia. Volume infusion while hyperthermic increased cardiac output by 2.8 ± 1.4 l/min (P < 0.001), but did not alter MCAvmean (P = 0.99) or MAP (P = 0.39) compared with hyperthermia alone. Relative to hyperthermia, at 30-mmHg LBNP acute volume infusion attenuated reductions (P < 0.001) in cardiac output (by 2.5 ± 0.9 l/min; P < 0.001), MAP (by 5 ± 6 mmHg; P = 0.004), and MCAvmean (by 12 ± 13%; P = 0.002). These data indicate that acute volume expansion does not reverse hyperthermia-induced reductions in cerebral perfusion pre-LBNP, but that it does attenuate reductions in cerebral perfusion during simulated hemorrhage in hyperthermic humans.
Description
Postprint, author's accepted manuscript
Keywords
lower-body negative pressure, heat stress, brain blood flow, volume infusion
Citation
Schlader ZJ, Seifert T, Wilson TE, Bundgaard-Nielsen M, Secher NH, Crandall CG. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage. Journal of Applied Physiology 114: 1730-1735, 2013.
Journal
Link(s) to data and video for this item
Relation
Rights
Type
Article