Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary

dc.altmetrics.displayfalseen
dc.contributor.authorGie, G.-M.en
dc.contributor.authorMakram, H.en
dc.contributor.authorTema,, R.en
dc.date.accessioned2014-10-29T19:22:54Zen
dc.date.available2014-10-29T19:22:54Zen
dc.date.issued2012en
dc.description.abstractWe consider the Navier-Stokes equations of an incompressible fluid in a three dimensional curved domain with permeable walls in the limit of small viscosity. Using a curvilinear coordinate system, adapted to the boundary, we construct a corrector function at order $\varepsilon^{j}$, $j = 0, 1$, where $\varepsilon$ is the (small) viscosity parameter. This allows us to obtain an asymptotic expansion of the Navier-Stokes solution at order $\varepsilon^{j}$, $j = 0, 1$, for $\varepsilon$ small . Using the asymptotic expansion, we prove that the Navier-Stokes solutions converge, as the viscosity parameter tends to zero, to the corresponding Euler solution in the natural energy norm. This work generalizes earlier results in [14] or [26], which discussed the case of a channel domain, while here the domain is curved.en
dc.identifier.citationGie, G. -M., Makram, H., & Temam, R. (2012). Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 7(4), 741-766. http://dx.doi.org/10.3934/nhm.2012.7.741en
dc.identifier.urihttps://hdl.handle.net/2022/19072
dc.language.isoen_USen
dc.publisherAmerican Institute of Mathematical Sciencesen
dc.relation.isversionofhttps://doi.org/10.3934/nhm.2012.7.741en
dc.rights© American Institute of Mathematical Sciences.en
dc.subjectBoundary layersen
dc.subjectCurvi-linear coordinatesen
dc.subjectNavier-Stokes equationsen
dc.subjectSingular perturbationsen
dc.subjectAsymptotic expansionen
dc.subjectCurvilinear coordinate systemsen
dc.subjectEuler solutionsen
dc.subjectIncompressible fluiden
dc.subjectNatural energyen
dc.subjectViscosity parametersen
dc.subjectAsymptotic analysisen
dc.subjectNavier Stokes equationsen
dc.subjectViscous flowen
dc.subjectDomain wallsen
dc.titleAsymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundaryen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1486771.pdf
Size:
568.67 KB
Format:
Adobe Portable Document Format
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.