Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary
dc.altmetrics.display | false | en |
dc.contributor.author | Gie, G.-M. | en |
dc.contributor.author | Makram, H. | en |
dc.contributor.author | Tema,, R. | en |
dc.date.accessioned | 2014-10-29T19:22:54Z | en |
dc.date.available | 2014-10-29T19:22:54Z | en |
dc.date.issued | 2012 | en |
dc.description.abstract | We consider the Navier-Stokes equations of an incompressible fluid in a three dimensional curved domain with permeable walls in the limit of small viscosity. Using a curvilinear coordinate system, adapted to the boundary, we construct a corrector function at order $\varepsilon^{j}$, $j = 0, 1$, where $\varepsilon$ is the (small) viscosity parameter. This allows us to obtain an asymptotic expansion of the Navier-Stokes solution at order $\varepsilon^{j}$, $j = 0, 1$, for $\varepsilon$ small . Using the asymptotic expansion, we prove that the Navier-Stokes solutions converge, as the viscosity parameter tends to zero, to the corresponding Euler solution in the natural energy norm. This work generalizes earlier results in [14] or [26], which discussed the case of a channel domain, while here the domain is curved. | en |
dc.identifier.citation | Gie, G. -M., Makram, H., & Temam, R. (2012). Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 7(4), 741-766. http://dx.doi.org/10.3934/nhm.2012.7.741 | en |
dc.identifier.uri | https://hdl.handle.net/2022/19072 | |
dc.language.iso | en_US | en |
dc.publisher | American Institute of Mathematical Sciences | en |
dc.relation.isversionof | https://doi.org/10.3934/nhm.2012.7.741 | en |
dc.rights | © American Institute of Mathematical Sciences. | en |
dc.subject | Boundary layers | en |
dc.subject | Curvi-linear coordinates | en |
dc.subject | Navier-Stokes equations | en |
dc.subject | Singular perturbations | en |
dc.subject | Asymptotic expansion | en |
dc.subject | Curvilinear coordinate systems | en |
dc.subject | Euler solutions | en |
dc.subject | Incompressible fluid | en |
dc.subject | Natural energy | en |
dc.subject | Viscosity parameters | en |
dc.subject | Asymptotic analysis | en |
dc.subject | Navier Stokes equations | en |
dc.subject | Viscous flow | en |
dc.subject | Domain walls | en |
dc.title | Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary | en |
dc.type | Article | en |
Files
Original bundle
1 - 1 of 1
Collections
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.