In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer
No Thumbnail Available
Can’t use the file because of accessibility barriers? Contact us
Date
2019-12-26
Journal Title
Journal ISSN
Volume Title
Publisher
Permanent Link
Abstract
Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.
Description
Keywords
Citation
Kugelgen, Andriko Von, et al. "In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer." Cell, 2019-12-26, https://doi.org/10.1016/j.cell.2019.12.006.
Journal
Cell