Calibrating the star formation rate at $z \sim 1$ from optical data
Loading...
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
The American Astronomical Society
Permanent Link
Abstract
We present a star formation rate (SFR) calibration based on optical data that is consistent with average observed rates in both the red and blue galaxy populations at $z \sim 1$. The motivation for this study is to calculate SFRs for DEEP2 Redshift Survey galaxies in the $0.7 < z < 1.4$ redshift range, but our results are generally applicable to similar optically selected galaxy samples without requiring UV or IR data. Using SFR fits from UV/optical spectral energy distributions (SEDs) in the All-Wavelength Extended Groth Strip International Survey, we explore the behavior of rest-frame B-band magnitude, observed [O II] luminosity, and rest-frame color with SED-fit SFR for both red sequence and blue cloud galaxies. The resulting SFR calibration is based on three optical-band observables: $M_{B} , \big(U – B\big)$, and $\big(B – V\big)$. The best-fit linear relation produces residual errors of 0.3 dex rms scatter for the full color-independent sample with minimal correlated residual error in $L\big[O_{II}\big]$ or stellar mass. We then compare the calibrated $z \sim 1$ SFRs to two diagnostics that use $L\big[O_{II}\big]$ as a tracer in local galaxies and correct for dust extinction at intermediate redshifts through either galaxy $B$-band luminosity or stellar mass. We find that an$ L\big[O_{II}\big]-M_{B}$ SFR calibration commonly used in the literature agrees well with our calculated SFRs after correcting for the average B-band luminosity evolution in $L_{*}$ galaxies. However, we find better agreement with a local $L\big[O_{II}\big]$-based SFR calibration that includes stellar mass to correct for reddening effects, indicating that stellar mass is a better tracer of dust extinction for all galaxy types and less affected by systematic evolution than galaxy luminosity from $z = 1$ to the current epoch.
Description
Keywords
galaxies: active, galaxies: evolution, galaxies: high-redshift
Citation
Mostek, N., Coil, A. L., Moustakas, J., Salim, S., & Weiner, B. J. (2012). Calibrating the star formation rate at $z \sim 1$ from optical data. Astrophysical Journal, 746(2), 124. http://dx.doi.org/10.1088/0004-637X/746/2/124
Journal
DOI
Link(s) to data and video for this item
Relation
Rights
© 2012 The American Astronomical Society
Type
Article