Integrating intracellular dynamics using CompuCell3D and bionetsolver: Applications to multiscale modelling of cancer cell growth and invasion

Loading...
Thumbnail Image
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science

Abstract

In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and $\beta$-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.

Description

Keywords

beta catenin, uvomorulin, cadherin, algorithm, article, cancer cell, cancer growth, cancer invasion, cell adhesion, cell function, computer prediction, computer program, controlled study, information processing, intermethod comparison, mathematical model, Monte Carlo method, simulation, animal, biological model, cell proliferation, computer simulation, human, metabolism, multicellular spheroid, neoplasm, pathology, Animals, beta Catenin, Cadherins, Cell Proliferation, Computer Simulation, Humans, Models, Biological, Monte Carlo Method, Neoplasm Invasiveness, Neoplasms, Spheroids, Cellular

Citation

Andasari V, Roper RT, Swat MH, Chaplain MAJ (2012) Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion. PLoS ONE 7(3): e33726. doi:10.1371/journal.pone.0033726

Journal

DOI

Link(s) to data and video for this item

Relation

Rights

© 2012 Andasari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Type

Article