Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type

dc.altmetrics.displayfalse
dc.contributor.authorCho, Y.J.
dc.contributor.authorRhoades, B.E.
dc.contributor.authorSaadat, R.
dc.contributor.authorSamet, B.
dc.contributor.authorShatanawi, W.
dc.date.accessioned2014-10-27T19:52:04Z
dc.date.available2014-10-27T19:52:04Z
dc.date.issued2012
dc.description.abstractIn this article, we study coupled coincidence and coupled common fixed point theorems in ordered generalized metric spaces for nonlinear contraction condition related to a pair of altering distance functions. Our results generalize and modify several comparable results in the literature.
dc.identifier.citationCho, Y. J., Rhoades, B. E., Saadat, R., Samet, B., & Shatanawi, W. (2012). Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory and Applications, 2012, 8. http://dx.doi.org/10.1186/1687-1812-2012-8
dc.identifier.urihttps://hdl.handle.net/2022/19071
dc.language.isoen_US
dc.publisherSpringer
dc.relation.isversionofhttps://doi.org/10.1186/1687-1812-2012-8
dc.rights© 2012 Cho et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rights.urihttp://creativecommons.org/licenses/by/2.0
dc.subjectAltering distance function
dc.subjectContraction of integral type
dc.subjectCoupled coincidence point
dc.subjectCoupled common fixed point
dc.subjectGeneralized metric space
dc.subjectOrdered set
dc.subjectWeakly contractive condition
dc.titleNonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1687-1812-2012-8.pdf
Size:
279.31 KB
Format:
Adobe Portable Document Format
Can’t use the file because of accessibility barriers? Contact us