On the Order of Magnitude of Cumulants of Von Mises Functionals and Related Statistics
dc.contributor.author | Bhattacharya, R. N. | |
dc.contributor.author | Puri, Madan L. | |
dc.date.accessioned | 2018-05-02T20:22:29Z | |
dc.date.available | 2018-05-02T20:22:29Z | |
dc.date.issued | 1983-05 | |
dc.description | Publisher's, offprint version | en |
dc.description.abstract | It is shown that under appropriate conditions the sth cumulant of a von Mises statistic or a $U$ (or $V$) statistic is $O(n^{-s + 1})$, $s ≥ 2$, as the sample size $n$ goes to infinity. A possible route toward the derivation of an asymptotic expansion of the characteristic function is indicated. | en |
dc.identifier.citation | Puri, M. L. "On the order of magnitude of cumulants of von Mises functionals and related statistics." Annals of Probability (1983), Volume 11 Issue 2, 346-354. Co-author: R.N. Bhattacharya. | en |
dc.identifier.uri | https://hdl.handle.net/2022/22061 | |
dc.language.iso | en | en |
dc.publisher | The Annals of Probability | en |
dc.relation.isversionof | http://www.jstor.org/stable/2243691 | en |
dc.subject | Statistical theories | en |
dc.subject | Polynomials | en |
dc.subject | Eigenfunctions | en |
dc.subject | Integers | en |
dc.subject | Analyticity | en |
dc.subject | Random variables | en |
dc.subject | Probabilities | en |
dc.subject | Coordinate systems | en |
dc.subject | Mathematical moments | en |
dc.title | On the Order of Magnitude of Cumulants of Von Mises Functionals and Related Statistics | en |
dc.type | Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On the Order of Magnitude of Cumulants of Von Mises Functionals and Related Statistics.pdf
- Size:
- 664.16 KB
- Format:
- Adobe Portable Document Format
- Description:
Collections
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.