Spatiotemporal Variability of Tropical Cyclone Precipitation Using a High-Resolution, Gridded (0.25° × 0.25°) Dataset for the Eastern United States, 1948-2015

dc.contributor.authorBregy, Josh
dc.contributor.authorMaxwell, Justin Timothy
dc.contributor.authorRobeson, Scott M.
dc.contributor.authorOrtegren, Jason
dc.contributor.authorSoule, Peter
dc.contributor.authorKnapp, Paul
dc.date.accessioned2025-02-20T16:09:12Z
dc.date.available2025-02-20T16:09:12Z
dc.date.issued2020-01-28
dc.descriptionThis record is for a(n) offprint of an article published in Journal of Climate on 2020-01-28; the version of record is available at https://doi.org/10.1175/jcli-d-18-0885.1.
dc.description.abstractTropical cyclones (TCs) are an important source of precipitation for much of the eastern United States. However, our understanding of the spatiotemporal variability of tropical cyclone precipitation (TCP) and the connections to large-scale atmospheric circulation is limited by irregularly distributed rain gauges and short records of satellite measurements. To address this, we developed a new gridded (0.25° × 0.25°) publicly available dataset of TCP (1948–2015; Tropical Cyclone Precipitation Dataset, or TCPDat) using TC tracks to identify TCP within an existing gridded precipitation dataset. TCPDat was used to characterize total June–November TCP and percentage contribution to total June–November precipitation. TCP totals and contributions had maxima on the Louisiana, North Carolina, and Texas coasts, substantially decreasing farther inland at rates of approximately 6.2–6.7 mm km$^{−1}$. Few statistically significant trends were discovered in either TCP totals or percentage contribution. TCP is positively related to an index of the position and strength of the western flank of the North Atlantic subtropical high (NASH), with the strongest correlations concentrated in the southeastern United States. Weaker inverse correlations between TCP and El Niño–Southern Oscillation are seen throughout the study site. Ultimately, spatial variations of TCP are more closely linked to variations in the NASH flank position or strength than to the ENSO index. The TCP dataset developed in this study is an important step in understanding hurricane–climate interactions and the impacts of TCs on communities, water resources, and ecosystems in the eastern United States.
dc.description.versionoffprint
dc.identifier.citationBregy, Josh, et al. "Spatiotemporal Variability of Tropical Cyclone Precipitation Using a High-Resolution, Gridded (0.25° × 0.25°) Dataset for the Eastern United States, 1948-2015." Journal of Climate, vol. 33, no. 5, 2020-01-28, https://doi.org/10.1175/jcli-d-18-0885.1.
dc.identifier.otherBRITE 6069
dc.identifier.urihttps://hdl.handle.net/2022/32309
dc.language.isoen
dc.relation.isversionofhttps://doi.org/10.1175/jcli-d-18-0885.1
dc.relation.journalJournal of Climate
dc.titleSpatiotemporal Variability of Tropical Cyclone Precipitation Using a High-Resolution, Gridded (0.25° × 0.25°) Dataset for the Eastern United States, 1948-2015

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
6069_Spatiotemporal-Variability-of-Tropical-Cyclone_Reformatted.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
Updating PDF format to enable text extraction. EMH 4/3/25
Can’t use the file because of accessibility barriers? Contact us