Comparing graphs of different sizes

dc.contributor.authorLyons, Russell
dc.date.accessioned2025-02-20T16:31:33Z
dc.date.available2025-02-20T16:31:33Z
dc.date.issued2017-05-02
dc.descriptionThis record is for a(n) postprint of an article published in Combinatorics, Probability and Computing on 2017-05-02; the version of record is available at https://doi.org/10.1017/s096354831700013x.
dc.description.abstractWe consider two notions describing how one finite graph may be larger than another. Using them, we prove several theorems for such pairs that compare the number of spanning trees, the return probabilities of random walks, and the number of independent sets, among other combinatorial quantities. Our methods involve inequalities for determinants, for traces of functions of operators, and for entropy.
dc.description.versionpostprint
dc.identifier.citationLyons, Russell. "Comparing graphs of different sizes." Combinatorics, Probability and Computing, vol. 26, no. 5, 2017-5-2, https://doi.org/10.1017/s096354831700013x.
dc.identifier.issn1469-2163
dc.identifier.otherBRITE 881
dc.identifier.urihttps://hdl.handle.net/2022/33009
dc.language.isoen
dc.relation.isversionofhttps://doi.org/10.1017/s096354831700013x
dc.relation.journalCombinatorics, Probability and Computing
dc.titleComparing graphs of different sizes

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0881_comparing-grpahs.pdf
Size:
145.07 KB
Format:
Adobe Portable Document Format
Can’t use the file because of accessibility barriers? Contact us