Analytic subordination for bi-free convolution
dc.contributor.author | Belinschi, S. T. | |
dc.contributor.author | Bercovici, Hari | |
dc.contributor.author | Gu, Y. | |
dc.contributor.author | Skoufranis, P. | |
dc.date.accessioned | 2025-02-20T16:47:28Z | |
dc.date.available | 2025-02-20T16:47:28Z | |
dc.date.issued | 2018-01-10 | |
dc.description.abstract | In this paper we study some analytic properties of bi-free additive convolution, both scalar and operator-valued. We show that using properties of Voiculescu's subordination functions associated to free additive convolution of operator-valued distributions, simpler formulas for bi-free convolutions can be derived. We use these formulas in order to prove a result about atoms of bi-free additive convolutions. | |
dc.identifier.citation | Belinschi, S. T., et al. "Analytic subordination for bi-free convolution." Journal of Functional Analysis, vol. 275, no. 4, pp. 926-966, 2018-01-10, https://doi.org/10.1016/j.jfa.2018.03.003. | |
dc.identifier.other | BRITE 1729 | |
dc.identifier.uri | https://hdl.handle.net/2022/30727 | |
dc.language.iso | en | |
dc.relation.isversionof | https://doi.org/10.1016/j.jfa.2018.03.003 | |
dc.relation.isversionof | http://arxiv.org/pdf/1702.01673 | |
dc.relation.journal | Journal of Functional Analysis | |
dc.title | Analytic subordination for bi-free convolution |
Files
Collections
Can’t use the file because of accessibility barriers? Contact us