Analytic subordination for bi-free convolution

dc.contributor.authorBelinschi, S. T.
dc.contributor.authorBercovici, Hari
dc.contributor.authorGu, Y.
dc.contributor.authorSkoufranis, P.
dc.date.accessioned2025-02-20T16:47:28Z
dc.date.available2025-02-20T16:47:28Z
dc.date.issued2018-01-10
dc.description.abstractIn this paper we study some analytic properties of bi-free additive convolution, both scalar and operator-valued. We show that using properties of Voiculescu's subordination functions associated to free additive convolution of operator-valued distributions, simpler formulas for bi-free convolutions can be derived. We use these formulas in order to prove a result about atoms of bi-free additive convolutions.
dc.identifier.citationBelinschi, S. T., et al. "Analytic subordination for bi-free convolution." Journal of Functional Analysis, vol. 275, no. 4, pp. 926-966, 2018-01-10, https://doi.org/10.1016/j.jfa.2018.03.003.
dc.identifier.otherBRITE 1729
dc.identifier.urihttps://hdl.handle.net/2022/30727
dc.language.isoen
dc.relation.isversionofhttps://doi.org/10.1016/j.jfa.2018.03.003
dc.relation.isversionofhttp://arxiv.org/pdf/1702.01673
dc.relation.journalJournal of Functional Analysis
dc.titleAnalytic subordination for bi-free convolution

Files

Can’t use the file because of accessibility barriers? Contact us