Analytic subordination for bi-free convolution

Loading...
Thumbnail Image
Can’t use the file because of accessibility barriers? Contact us

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this paper we study some analytic properties of bi-free additive convolution, both scalar and operator-valued. We show that using properties of Voiculescu's subordination functions associated to free additive convolution of operator-valued distributions, simpler formulas for bi-free convolutions can be derived. We use these formulas in order to prove a result about atoms of bi-free additive convolutions.

Description

Keywords

Citation

Belinschi, S. T., et al. "Analytic subordination for bi-free convolution." Journal of Functional Analysis, vol. 275, no. 4, pp. 926-966, 2018-01-10, https://doi.org/10.1016/j.jfa.2018.03.003.

Journal

Journal of Functional Analysis

DOI

Relation

Rights

Type