Normal Approximation of U-Statistics in Hilbert Space

dc.contributor.authorBorovskikh, Yu. V.
dc.contributor.authorPuri, Madan L.
dc.contributor.authorSazonov, V. V.
dc.date.accessioned2018-05-03T18:31:43Z
dc.date.available2018-05-03T18:31:43Z
dc.date.issued1997
dc.descriptionPublisher's, offprint version
dc.description.abstractLet $\{U_n\}$, $n=1,2,...,$ be Hilbert space H-valued U-statistics with kernel $\Phi(\cdotp,\cdot)$, corresponding to a sequence of observations (random variables) $X_1,X_2,\ldots\ $. The rate of convergence on balls in the central limit theorem for $\{U_n\}$ is investigated. The obtained estimate is of order $n^{-1/2}$ and depends explicitly on $E\|\Phi(X_1,X_2)\|^3$ and on the trace and the first nine eigenvalues of the covariance operator of $E(\Phi(X_1,X_2)|X_1)$.
dc.identifier.citationPuri, M. L. “Normal approximation of U-statistics in Hilbert spaces.” Translation by SIAM,Theory of Probability and its Applications (1997), Volume 41 Issue 3, 481–504. Co-authors: Yu.V. Borovskich and V.V. Sazonov.
dc.identifier.doihttps://doi.org/10.1137/S0040585X97975198
dc.identifier.urihttps://hdl.handle.net/2022/22086
dc.language.isoen
dc.publisherTheory of Probability & Its Applications
dc.relation.isversionofhttps://epubs.siam.org/doi/10.1137/S0040585X97975198
dc.subjectU-statistic
dc.subjectHilbert space
dc.subjectcentral limit theorem
dc.subjectnormal (Gaussian) approximation
dc.subjectrate of convergence
dc.titleNormal Approximation of U-Statistics in Hilbert Space
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Normal approximation of U-statistics in Hilbert spaces.pdf
Size:
508.82 KB
Format:
Adobe Portable Document Format
Description:
Can’t use the file because of accessibility barriers? Contact us