On the restriction theorem for the paraboloid in ${\mathbb R}^4$

dc.contributor.authorDemeter, Ciprian
dc.date.accessioned2025-02-20T16:20:44Z
dc.date.available2025-02-20T16:20:44Z
dc.date.issued2019-02-14
dc.description.abstractWe prove that the recent breaking (Zahl, 2018) of the 3/2 barrier in Wolff’s estimate on the Kakeya maximal operator in ${\mathbb R}^4$ leads to improving the 14/5 threshold for the restriction problem for the paraboloid in ${\mathbb R}^4$. One of the ingredients is a slight refinement of a certain trilinear estimate (Guth, 2016). The proofs are deliberately presented in a non-technical and concise format, so as to make the arguments more readable and focus attention on the key tools.
dc.identifier.citationDemeter, Ciprian. "On the restriction theorem for the paraboloid in ${\mathbb R}^4$." Colloquium Mathematicum, vol. 156, no. 2, 2019-02-14, https://doi.org/10.4064/cm7393-9-2018.
dc.identifier.issn0010-1354
dc.identifier.otherBRITE 4941
dc.identifier.urihttps://hdl.handle.net/2022/31468
dc.language.isoen
dc.relation.isversionofhttps://doi.org/10.4064/cm7393-9-2018
dc.relation.isversionofhttp://arxiv.org/pdf/1701.03523
dc.relation.journalColloquium Mathematicum
dc.titleOn the restriction theorem for the paraboloid in ${\mathbb R}^4$

Files

Can’t use the file because of accessibility barriers? Contact us