On the algebraic K-theory of formal power series

dc.altmetrics.displayfalseen
dc.contributor.authorLindenstrauss, A.
dc.contributor.authorMcCarthy, R.
dc.date.accessioned2014-10-29T19:53:17Z
dc.date.available2014-10-29T19:53:17Z
dc.date.issued2012
dc.description.abstractIn this paper we extend the computation of the the typical curves of algebraic K-theory done by Lars Hesselholt and Ib Madsen to general tensor algebras. The models used allow us to determine the stages of the Taylor tower of algebraic K-theory as a functor of augmented algebras, as defined by Tom Goodwillie, when evaluated on derived tensor algebras. For $R$ a discrete ring, and $M$ a simplicial $\LARGE{\tau}\normalsize{_{R}}$-bimodule, we let $\LARGE{\tau}\normalsize{_{R}\big(M\big)}$ denote the (derived) tensor algebra of $M$ over $R$, and $\LARGE{\tau}\;\normalsize{^{\pi}_{R}}$ denote the ring of formal (derived) power series in $M$ over $R$. We define a natural transformation of functors of simplicial $R$-bimodules $\phi: \sum\tilde{K}\big(R;\; \big)\rightarrow\tilde{K}\big(\LARGE{\tau}\normalsize{_{R}\big(\; \big)\big)}$.which is closely related to Waldhausen's equivalence $\sum\tilde{K}\big(\text{Nil}\big(R; \;\big)\big)\rightarrow\tilde{K}\big(\LARGE{\tau}\normalsize{^{\pi}_{R}\big( \big)\big)}$. We show that $\phi$ induces an equivalence on any finite stage of Goodwillie's Taylor towers of the functors at any simplicial bimodule. This is used to show that there is an equivalence of functors $\sum W\big(R; \;\big)\rightarrow^{\simeq}\text{holim}_{n}\tilde{K}\big(\LARGE{\tau}\normalsize{_{R}\big(\; \big)/I^{n+1}\big)}$, and for connected bimodules, also an equivalence $\sum\tilde{K}\big(R; \;\big)\rightarrow^{\simeq}\tilde{K}\big(\LARGE{\tau}\normalsize{_{R}\big( \;\big)\big)}$.en
dc.identifier.citationLindenstrauss, A., & McCarthy, R. (2012). On the algebraic K-theory of formal power series. Journal of K-Theory, 10(1), 165-189. http://dx.doi.org/10.1017/is012003003jkt186en
dc.identifier.urihttps://hdl.handle.net/2022/19076
dc.language.isoen_USen
dc.publisherCambridge University Pressen
dc.relation.isversionofhttps://doi.org/10.1017/is012003003jkt186en
dc.rights© 2012 ISOPPen
dc.subjectalgebraic K–theoryen
dc.subjectK-theory of Endomorphismsen
dc.subjectGoodwillie Calculusen
dc.subjectFormal Power Seriesen
dc.subjectTensor Algebraen
dc.titleOn the algebraic K-theory of formal power seriesen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1486847.pdf
Size:
224.66 KB
Format:
Adobe Portable Document Format
Description:
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.