Physically Interacting With Four Dimensions
Loading...
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Date
2010-06-08
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
[Bloomington, Ind.] : Indiana University
Permanent Link
Abstract
People have long been fascinated with understanding the fourth
dimension. While making pictures of 4D objects by projecting them to 3D can help reveal basic geometric features, 3D graphics images by themselves are of limited value. For example, just as 2D shadows of 3D curves may have lines crossing one another in the shadow, 3D graphics projections of smooth 4D topological surfaces can be interrupted where one surface intersects another.
The research presented here creates physically realistic models for
simple interactions with objects and materials in a virtual 4D world.
We provide methods for the construction, multimodal exploration, and interactive manipulation of a wide variety of 4D objects. One basic achievement of this research is to exploit the free motion of a
computer-based haptic probe to support a continuous motion that
follows the \emph{local continuity\/} of a 4D surface, allowing collision-free exploration in the 3D projection. In 3D, this interactive probe follows the full local continuity of the surface as though we were in fact \emph{physically touching\/} the actual static 4D object.
Our next contribution is to support dynamic 4D objects that can move, deform, and collide with other objects as well as with themselves. By combining graphics, haptics, and collision-sensing physical modeling, we can thus enhance our 4D visualization experience. Since we cannot actually place interaction devices in 4D, we develop fluid methods for interacting with a 4D object in its 3D shadow image using adapted reduced-dimension 3D tools for manipulating objects embedded in 4D. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D interactive or haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the real-world experience accessible to human beings.
Description
Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009
Keywords
Visualization, Haptics, 4D, Mathematical Visualization, HCI
Citation
Journal
DOI
Link(s) to data and video for this item
Relation
Rights
Type
Doctoral Dissertation