Exercise intensity independently modulates thermal behavior during exercise recovery, but not during exercise

Loading...
Thumbnail Image
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.

Date

2019-01-17

Journal Title

Journal ISSN

Volume Title

Publisher

Journal of Applied Physiology

Abstract

We tested the hypothesis that thermal behavior is greater during and after high- compared with moderate-intensity exercise. In a 27°C, 20% relative humidity environment, 20 participants (10 women, 10 men) cycled for 30 min at moderate [53% (SD 6) peak oxygen uptake (V̇o2peak) or high [78% (SD 6) V̇o2peak] intensity, followed by 120 min of recovery. Mean skin and core temperatures and mean skin wettedness were recorded continuously. Participants maintained thermally comfortable neck temperatures with a custom-made neck device. Neck device temperature provided an index of thermal behavior. The weighted average of mean skin and core temperatures and mean skin wettedness provided an indication of the afferent stimulus to thermally behave. Mean skin and core temperatures were greater at end-exercise in high intensity (P < 0.01). Core temperature remained elevated in high intensity until 70 min of recovery (P = 0.03). Mean skin wettedness and the afferent stimulus were greater at 10–20 min of exercise in high intensity (P ≤ 0.03) and remained elevated until 60 min of recovery (P < 0.01). Neck device temperature was lower during exercise in high versus moderate intensity (P ≤ 0.02). There was a strong relation between the afferent stimulus and neck device temperature during exercise (high: R2 = 0.82, P < 0.01; moderate: R2 = 0.95, P < 0.01) and recovery (high: R2 = 0.97, P < 0.01; moderate: R2 = 0.93, P < 0.01). During exercise, slope (P = 0.49) and y-intercept (P = 0.91) did not differ between intensities. In contrast, slope was steeper (P < 0.01) and y-intercept was higher (P < 0.01) during recovery from high-intensity exercise. Thermal behavior is greater during high-intensity exercise because of the greater stimulus to behave. The withdrawal of thermal behavior is augmented after high-intensity exercise.

Description

Postprint, author's accepted manuscript

Keywords

exercise, recovery, thermoafferent feedback, thermoregulation, thermoregulatory behavior

Citation

Vargas NT, Chapman CL, Johnson BD, Gathercole R, Schlader ZJ. Exercise intensity independently modulates thermal behavior during exercise recovery, but not during exercise. Journal of Applied Physiology 126: 1150-1159, 2019.

Journal

Relation

Rights

Type

Article