Complex Multiplication Symmetry of Black Hole Attractors

dc.contributor.authorLynker, Monika
dc.contributor.authorPeriwal, Vipul
dc.contributor.authorSchimmrigk, Rolf
dc.date.accessioned2021-05-19T19:44:12Z
dc.date.available2021-05-19T19:44:12Z
dc.date.issued2003
dc.description.abstractWe show how Moore’s observation, in the context of toroidal compactifications in type IIB string theory, concerning the complex multiplication structure of black hole attractor varieties, can be generalized to Calabi-Yau compactifications with finite fundamental groups. This generalization leads to an alternative general framework in terms of motives associated to a Calabi-Yau variety in which it is possible to address the arithmetic nature of the attractor varieties in a universal way via Deligne’s period conjecture.en
dc.format.extent30 pages
dc.format.mimetypePDF
dc.identifier.citationLynker, M., Periwal, V., & Schimmrigk, R. (2003). Complex multiplication symmetry of black hole attractors. Nucl.Phys.B, 667, 484–504.
dc.identifier.urihttps://hdl.handle.net/2022/26455
dc.language.isoenen
dc.publisherElsevieren
dc.subject.lcshCalabi-Yau manifolds
dc.subject.lcshBlack holes (Astronomy)
dc.subject.lcshAbelian varieties
dc.titleComplex Multiplication Symmetry of Black Hole Attractorsen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lynker_ComplexMultiplicationSymm_2003.pdf
Size:
375.48 KB
Format:
Adobe Portable Document Format
Description:
Can’t use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.