Electron Antineutrino Search at the Sudbury Neutrino Observatory
Loading...
If you need an accessible version of this item, please email your request to iusw@iu.edu so that they may create one and provide it to you.
Date
2004
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Permanent Link
Abstract
Upper limits on the v¯e flux at the Sudbury Neutrino Observatory have been set based on the v¯e charged-current reaction on deuterium. The reaction produces a positron and two neutrons in coincidence. This distinctive signature allows a search with very low background for v¯e’s from the
Sun and other potential sources. Both differential and integral limits on the v¯e flux have been placed in the energy range from 4 – 14.8 MeV. For an energy-independent ve -> v¯e conversion mechanism, the integral limit on the flux of solar v¯e’s in the energy range from 4 – 14.8 MeV is found to be Φv¯e ≤ 3.4 × 104cm−2s−1 (90% C.L.), which corresponds to 0.81% of the standard
solar model 8B e flux of 5.05 × 106cm−2s−1, and is consistent with the more sensitive limit from KamLAND in the 8.3 – 14.8 MeV range of 3.7×102cm−2s−1 (90% C.L.). In the energy range from 4 – 8 MeV, a search for v¯e’s is conducted using coincidences in which only the two neutrons are
detected. Assuming a v¯e spectrum for the neutron induced fission of naturally occurring elements, a flux limit of Φv¯e 2.0 × 106cm−2s−1 (90% C.L.) is obtained.
Description
Keywords
Citation
DOI
Link(s) to data and video for this item
Relation
Rights
Type
Article