An algebraic characterization of expanding Thurston maps

dc.altmetrics.displayfalse
dc.contributor.authorHaïssinsky, P.
dc.contributor.authorPilgrim, K.M.
dc.date.accessioned2014-10-29T19:26:26Z
dc.date.available2014-10-29T19:26:26Z
dc.date.issued2012
dc.description.abstractLet $f:S^{2} \rightarrow S^{2}$ be a postcritically finite branched covering map without periodic branch points. We give necessary and sufficient algebraic conditions for $f$ to be homotopic, relative to its postcritical set, to an expanding map $g$.
dc.identifier.citationHaïssinsky, P., & Pilgrim, K. M. (2012). An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 6(4), 451-476. http://dx.doi.org/10.3934/jmd.2012.6.451
dc.identifier.urihttps://hdl.handle.net/2022/19074
dc.language.isoen_US
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.isversionofhttps://doi.org/10.3934/jmd.2012.6.451
dc.rights© 2012 AIM Sciences. In the Public Domain after 2040.
dc.subjectThurston map
dc.subjectVirtual endomorphism
dc.subjectexpanding
dc.titleAn algebraic characterization of expanding Thurston maps
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1493835.pdf
Size:
552.2 KB
Format:
Adobe Portable Document Format
Description:
Can’t use the file because of accessibility barriers? Contact us