Local martingale solutions to the stochastic two layer shallow water equations with multiplicative white noise

dc.contributor.authorLink, Joshua
dc.contributor.authorNguyen, Phuong
dc.contributor.authorTemam, Roger Meyer
dc.date.accessioned2025-02-20T15:48:09Z
dc.date.available2025-02-20T15:48:09Z
dc.date.issued2018-05-01
dc.descriptionThis record is for a(n) preprint of an article published in Journal of Mathematical Analysis and Applications on 2018-05-01; the version of record is available at https://doi.org/10.1016/j.jmaa.2017.10.045.
dc.description.abstractWe study the two layers shallow water equations on a bounded domain $\mathscr{M}$ $\subset$ $\mathbb{R}^2$ driven by a multiplicative white noise, and obtain the existence and uniqueness of a maximal pathwise solution for a limited period of time, the time of existence being strictly positive almost surely. The proof makes use of anisotropic estimates and stopping time arguments, of the Skorohod representation theorem, and the Gyöngy–Krylov theorem which is an infinite dimensional analogue of the Yamada–Watanabe theorem.
dc.description.versionpreprint
dc.identifier.citationLink, Joshua, et al. "Local martingale solutions to the stochastic two layer shallow water equations with multiplicative white noise." Journal of Mathematical Analysis and Applications, vol. 461, no. 1, pp. 701-751, 2018-5-1, https://doi.org/10.1016/j.jmaa.2017.10.045.
dc.identifier.issn0022-247X
dc.identifier.otherBRITE 4031
dc.identifier.urihttps://hdl.handle.net/2022/31218
dc.language.isoen
dc.relation.isversionofhttps://doi.org/10.1016/j.jmaa.2017.10.045
dc.relation.journalJournal of Mathematical Analysis and Applications
dc.titleLocal martingale solutions to the stochastic two layer shallow water equations with multiplicative white noise

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4031_local-martingale-two-layer-shallow-water_Reformatted.pdf
Size:
671.79 KB
Format:
Adobe Portable Document Format
Description:
Updating PDF format to enable text extraction. EMH 4/3/25
Can’t use the file because of accessibility barriers? Contact us