Facies analysis and Reservoir Characterization of the Cambrian Mount Simon Formation in the Illinois Basin: Implications for CO Sequestration and Storage

Loading...
Thumbnail Image
Date
2009-06
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Deep saline reservoirs have become a target of increased study with the development of carbon sequestration technologies. In the Illinois Basin, The Upper Cambrian Mt. Simon Formation has been proposed as a potential reservoir for CO2 sequestration. Depth and limited economic interest in the Mt. Simon have left it minimally explored with previous detailed depositional facies analysis only performed at localities outside of the Illinois Basin, where the Mt. Simon is much thinner and closer to the surface. From the analysis of recently acquired and preexisting relatively complete cores and composite cores of the Mt. Simon Formation in addition to basin wide correlation with geophysical well logs, we present a revised model for the deposition of the Mt. Simon Formation in the Illinois Basin region and the resulting implications for a CO2 reservoir. The Mt. Simon Formation is a sub-quartz to quartz arenite that unconformably overlies the crystalline basement of the interior North American craton. Thickness of the Mt. Simon ranges from a few hundred to over 2000 feet thick and structually from 2000 to over 14000 feet below sea level. The upper contact of the Mt. Simon Formation is gradational with the overlying Eau Clair Formation while the lower contact unconformably bounds the crystalline basement. Core analysis has led to the identification of several distinct facies within the Mt. Simon. The lowermost facies is dominated by medium grain to granular eolian sands with distinct interdunal red mudstone. Gradationally above the lowermost facies, tidal indicators become increasingly present with mud drapes and flaser bedding located in isolated units. This transgressive sequence from nonmarine to marine depositional environments correlates with sea level curves for the Upper Cambrian. By increasing our understanding of the Mt. Simon, we can better understand its CO2 reservoir potential.
Description
This poster was presented at the American Association of Petroleum Geologists (AAPG) Annual Meeting, from June 7-10, 2009, in Denver, Colorado.
Keywords
Indiana Geological Survey, Indiana, Mount Simon Sandstone, CO2 reservoir, carbon sequestration, CO2 sequestration, regional capacity, Upper Cambrian
Citation
DOI
Link(s) to data and video for this item
Relation
Rights
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
Type
Presentation