Show simple item record

dc.contributor.author Naylor, Shawn
dc.contributor.author Gustin, Andrew
dc.contributor.author Ellett, Kevin M.
dc.date.accessioned 2016-01-25T20:29:52Z
dc.date.available 2016-01-25T20:29:52Z
dc.date.issued 2012
dc.identifier.uri http://hdl.handle.net/2022/20615
dc.description Poster presented at American Geophysical Union Meeting, 2012. en
dc.description.abstract Weather stations that collect reliable, sustained meteorological data sets are becoming more widely distributed because of advances in both instrumentation and data server technology. However, sites collecting soil moisture and soil temperature data remain sparse with even fewer locations where complete meteorological data are collected in conjunction with soil data. Thanks to the advent of sensors that collect continuous in-situ thermal properties data for soils, we have gone a step further and incorporated thermal properties measurements as part of hydrologic instrument arrays in central and northern Indiana. The coupled approach provides insights into the variability of soil thermal conductivity and diffusivity attributable to geologic and climatological controls for various hydrogeologic settings. These data are collected to facilitate the optimization of ground-source heat pumps (GSHPs) in the glaciated Midwest by establishing publicly available data that can be used to parameterize system design models. A network of six monitoring sites was developed in Indiana. Sensors that determine thermal conductivity and diffusivity using radial differential temperature measurements around a heating wire were installed at 1.2 meters below ground surface— a typical depth for horizontal GSHP systems. Each site also includes standard meteorological sensors for calculating reference evapotranspiration following the methods by the Food and Agriculture Organization (FAO) of the United Nations. Vadose zone instrumentation includes time domain reflectometry soil-moisture and temperature sensors installed at 0.3-meter depth intervals down to a 1.8-meter depth, in addition to matric potential sensors at 0.15, 0.3, 0.6, and 1.2 meters. Cores collected at 0.3-meter intervals were analyzed in a laboratory for grain size distribution, bulk density, thermal conductivity, and thermal diffusivity. Our work includes developing methods for calibrating thermal properties sensors based on known standards and comparing measurements from transient line heat source devices. Transform equations have been developed to correct in-situ measurements of thermal conductivity and comparing these results with soil moisture data indicates that thermal conductivity can increase by as much as 25 percent during wetting front propagation. Thermal dryout curves have also been modeled based on laboratory conductivity data collected from core samples to verify field measurements, and alternatively, temperature profile data are used to calibrate near-surface temperature gradient models. We compare data collected across various spatial scales to assess the potential for upscaling near-surface thermal regimes based on available soils data. A long-term goal of the monitoring effort is to establish continuous data sets that determine the effect of climate variability on soil thermal properties such that expected ranges in thermal conductivity can be used to determine optimal ground-coupling loop lengths for GSHP systems. en
dc.language.iso en_US en
dc.rights This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. en
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ en
dc.subject soil thermal properties en
dc.subject ground-source heat pump en
dc.subject thermal conductivity en
dc.subject ground temperature en
dc.subject soil moisture en
dc.title Quantifying the Influence of Near-Surface Water-Energy Budgets on Soil Thermal Properties Using a Network of Coupled Meteorological and Vadose-Zone Instrument Arrays in Indiana, USA en
dc.type Presentation en
dc.altmetrics.display true en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUScholarWorks


Advanced Search

Browse

My Account

Statistics