Abstract:
The human genome is tightly folded to fit within the restricted space of the nucleus. One of the key goals in understanding the folding principles of DNA is to unravel the mysteries of how functional elements that are separated from each other are brought together. Long-range interactions between folded segments of chromosomes form complex three-dimensional networks and are fundamental in controlling gene expression. These long-range interactions have been observed using chromosome conformation capture (3C). This Hi-C data contains a wealth of information on the nearest-neighbor influence on the deviation of the DNA axis that can
be modeled theoretically. We have developed a tool using WebGL to visualize the modeled structures.