Astronomy
Permanent link for this communityhttps://hdl.handle.net/2022/12958
Browse
Browsing Astronomy by Subject "galaxies: evolution"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Average metallicity and star formation rate of Ly$\alpha$ emitters probed by a triple narrowband survey*(The American Astronomical Society, 2012) Nakajima, K.; Ouchi, M.; Shimasaku, K.; Ono, Y.; Lee, J.C.; Foucad, S.; Ly, C.; Dale, D.A.; Salim, S.; Finn, R.; Almaini, O.; Okamura, S.We present the average metallicity and star formation rate (SFR) of $Ly\alpha$ emitters (LAEs) measured from our large-area survey with three narrowband (NB) filters covering the $Ly\alpha, \big[O II\big]\lambda3727$, and $\text{H}\alpha+\big[\text{N} II\big]$ lines of LAEs at $z = 2.2$. We select 919 $z = 2.2$ LAEs from Subaru/Suprime-Cam NB data in conjunction with Magellan/IMACS spectroscopy. Of these LAEs, 561 and 105 are observed with KPNO/NEWFIRM near-infrared NB filters whose central wavelengths are matched to redshifted $\big[\text{O} II\big]$ and $\text{H}\alpha$ nebular lines, respectively. By stacking the near-infrared images of the LAEs, we successfully obtain average nebular-line fluxes of LAEs, the majority of which are too faint to be identified individually by NB imaging or deep spectroscopy. The stacked object has an Hα luminosity of $1.7 × 10^{42} erg s^{–1}$ corresponding to an SFR of $14 M_{\odot} yr6{–1}$. We place, for the first time, a firm lower limit to the average metallicity of LAEs of $Z \gtrsim 0.09 Z_{\odot} \big(2\sigma\big)$ based on the $\big[\text{O} II\big]/\big(\text{H}\alpha+\big[\text{N} II\big]\big)$ index together with photoionization models and empirical relations. This lower limit of metallicity rules out the hypothesis that LAEs, so far observed at $z \sim 2$, are extremely metal-poor $\big(Z < 2 × 10–2 Z_{\odot}\big)$ galaxies at the $4\sigma$ level. This limit is higher than a simple extrapolation of the observed mass-metallicity relation of $z \sim 2$ UV-selected galaxies toward lower masses $\big(5 × 108 M_{\odot}\big)$, but roughly consistent with a recently proposed fundamental mass-metallicity relation when the LAEs' relatively low SFR is taken into account. The $\text{H}\alpha$ and $\text{Ly}\alpha$ luminosities of our NB-selected LAEs indicate that the escape fraction of $\text{Ly}\alpha$ photons is $\sim12%-30%$, much higher than the values derived for other galaxy populations at $z \sim 2$.Item Calibrating the star formation rate at $z \sim 1$ from optical data(The American Astronomical Society, 2012) Mostek, N.; Coil, A.L.; Moustakas, J.; Salim, S.; Weiner, B.J.We present a star formation rate (SFR) calibration based on optical data that is consistent with average observed rates in both the red and blue galaxy populations at $z \sim 1$. The motivation for this study is to calculate SFRs for DEEP2 Redshift Survey galaxies in the $0.7 < z < 1.4$ redshift range, but our results are generally applicable to similar optically selected galaxy samples without requiring UV or IR data. Using SFR fits from UV/optical spectral energy distributions (SEDs) in the All-Wavelength Extended Groth Strip International Survey, we explore the behavior of rest-frame B-band magnitude, observed [O II] luminosity, and rest-frame color with SED-fit SFR for both red sequence and blue cloud galaxies. The resulting SFR calibration is based on three optical-band observables: $M_{B} , \big(U – B\big)$, and $\big(B – V\big)$. The best-fit linear relation produces residual errors of 0.3 dex rms scatter for the full color-independent sample with minimal correlated residual error in $L\big[O_{II}\big]$ or stellar mass. We then compare the calibrated $z \sim 1$ SFRs to two diagnostics that use $L\big[O_{II}\big]$ as a tracer in local galaxies and correct for dust extinction at intermediate redshifts through either galaxy $B$-band luminosity or stellar mass. We find that an$ L\big[O_{II}\big]-M_{B}$ SFR calibration commonly used in the literature agrees well with our calculated SFRs after correcting for the average B-band luminosity evolution in $L_{*}$ galaxies. However, we find better agreement with a local $L\big[O_{II}\big]$-based SFR calibration that includes stellar mass to correct for reddening effects, indicating that stellar mass is a better tracer of dust extinction for all galaxy types and less affected by systematic evolution than galaxy luminosity from $z = 1$ to the current epoch.Item The dependence of quenching upon the inner structure of galaxies at 0.5 ≤ $z$ < 0.8 in the DEEP2/AEGIS survey(The American Astronomical Society, 2012) Cheung, E.; Faber, S.M.; Koo, D.C.; Dutton, A.A.; Simard, L.; McGrath, E.J.; Huang, J.-S.; Bell, E.F.; Dekel, A.; Fang, J.J.; Salim, S.; Barro, G.; Bundy, K.; Coil, A.L.; Cooper, M.C.; Conselice, C.J.; Davis, M.; Domínguez, A.; Kassin, S.A.; Kocevski, D.D.; Koekemoer, A.M.; Lin, L.; Lotz, J.M.; Newman, J.a.; Phillips, A.C.; Rosario, D.J.; Weiner, B.J.; Willmer, C.N.A.The shutdown of star formation in galaxies is generally termed "quenching." Quenching may occur through a variety of processes, e.g., active galactic nucleus (AGN) feedback, stellar feedback, or the shock heating of gas in the dark matter halo. However, which mechanism(s) is, in fact, responsible for quenching is still in question. This paper addresses quenching by searching for traces of possible quenching processes through their effects on galaxy structural parameters such as stellar mass ($M_{\ast }$), $M_{\ast }/r_{e}$, surface stellar mass density ($\sim M_{\ast }/r^{2}_{e}$), and Sérsic index ($n$). We analyze the rest-frame $U - B$ color correlations versus these structural parameters using a sample of galaxies in the redshift range $0.5 \lesssim z < 0.8$ from the DEEP2/AEGIS survey. In addition to global radii, stellar masses, and Sérsic parameters, we also use "bulge" and "disk" photometric measurements from GIM2D fits to $\textit{HST/ACS V}$ and $I$ images. We assess the tightness of the color relationships by measuring their "overlap regions," defined as the area in color-parameter space in which red and blue galaxies overlap; the parameter that minimizes these overlap regions is considered to be the most effective color discriminator. We find that Sérsic index ($n$) has the smallest overlap region among all tested parameters and resembles a step function with a threshold value of $n$ = 2.3. There exists, however, a significant population of outliers with blue colors yet high n values that seem to contradict this behavior; they make up $\approx$ 40% of $n$ > 2.3 galaxies. We hypothesize that their Sérsic values may be distorted by bursts of star formation, AGNs, and/or poor fits, leading us to consider central surface stellar mass density, $\sum^{\ast }_{1 \:\text{kpc}}$, as an alternative to Sérsic index. Not only does $\sum^{\ast }_{1 \:\text{kpc}}$ correct the outliers, but it also forms a tight relationship with color, suggesting that the $\textit{innermost structure of galaxies is most physically linked with quenching}$. Furthermore, at $z \sim 0.65$, the majority of the blue cloud galaxies cannot simply fade onto the red sequence since their GIM2D bulge masses are only half as large on average as the bulge masses of similar red sequence galaxies, thus demonstrating that stellar mass must absolutely increase at the centers of galaxies as they quench. We discuss a two-stage model for quenching in which galaxy star formation rates are controlled by their dark halos while they are still in the blue cloud and a second quenching process sets in later, associated with the central stellar mass buildup. The mass buildup is naturally explained by any non-axisymmetric features in the potential, such as those induced by mergers and/or disk instabilities. However, the identity of the second quenching agent is still unknown. We have placed our data catalog onlineItem Direct oxygen abundances for low-luminosity LVL galaxies(The American Astronomical Society, 2012) Berg, D.A.; Skillman, E.D.; Marble, A.R.; Van Zee, L.; Engelbracht, C.W.; Lee, J.C.; Kennicutt, R.C.; Calzetti, D.; Dale, D.A.; Johnson, B.D.We present MMT spectroscopic observations of H II regions in 42 low luminosity galaxies in the Spitzer Local Volume Legacy survey. For 31 of the 42 galaxies in our sample, we were able to measure the temperature sensitive [O III] $\lambda$4363 line at a strength of $4\sigma$ or greater, and thus determine oxygen abundances using the "direct" method. Our results provide the first "direct" estimates of oxygen abundance for 19 of these galaxies. "Direct" oxygen abundances were compared to $B$-band luminosities, 4.5 $\mu$m luminosities, and stellar masses in order to characterize the luminosity-metallicity and mass-metallicity relationships at low luminosity. We present and analyze a "Combined Select" sample composed of 38 objects (drawn from a sub-set of our parent sample and the literature) with "direct" oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). Consistent with previous studies, the $B$ band and 4.5 $\mu$m luminosity-metallicity relationships for the 38 objects were found to be$12 + log(O/H) = (6.27 \pm 0.21) + (- 0.11 \pm 0.01)M_{B}$and$12+log(O/H) = (6.10 \pm 0.21) + (- 0.10 \pm 0.01)M_{[4.5]}$with dispersions of $\sigma$ = 0.15 and 0.14, respectively. The slopes of the optical and near-IR L-Z relationships have been reported to be different for galaxies with luminosities greater than that of the LMC. However, the similarity of the slopes of the optical and near-IR L-Z relationships for our sample probably reflects little influence by dust extinction in the low luminosity galaxies. For this sample, we derive a mass-metallicity relationship of $12 + log\big(O/H\big) = \big(5.61 \pm 0.24\big) + \big(0.29 \pm 0.03\big)log \big(M_{\star}\big)$, which agrees with previous studies; however, the dispersion ($\sigma$ = 0.15) is not significantly lower than that of the L-Z relationships. Because of the low dispersions in these relationships, if an accurate distance is available, the luminosity of a low luminosity galaxy is often a better indicator of metallicity than that derived using certain "strong-line" methods, so significant departures from the L-Z relationships may indicate that caution is prudent in such cases. With these new "direct" metallicities we also revisit the 70/160 $\mu$m color metallicity relationship. Additionally, we examine N/O abundance trends with respect to oxygen abundance and B - V color. We find a positive correlation between N/O ratio and B - V color for $0.05 \lesssim B - V \lesssim 0.75: log (N/O) = (1.18 \pm 0.9\big) × (B - V) + (- 1.92 \pm 0.08)$, with a dispersion of $\sigma$ = 0.14, which is in agreement with previous studies.Item Galaxy-scale star formation on the red sequence: The continued growth of S0s and the quiescence of ellipticals(The American Astronomical Society, 2012) Salim, S.; Fang, J.J.; Rich, R.M.; Faber, S.M.; Thilker, D.A.This paper examines star formation (SF) in relatively massive, primarily early-type galaxies (ETGs) at $z \sim 0.1$. A sample is drawn from bulge-dominated Galaxy Evolution Explorer/Sloan Digital Sky Survey (GALEX/SDSS) galaxies on the optical red sequence with strong UV excess and yet quiescent SDSS spectra. High-resolution far-UV imaging of 27 such ETGs using Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel (ACS/SBC) reveals structured UV morphology in 93% of the sample, consistent with low-level ongoing SF ($\sim0.5 M_{\odot} yr^{–1}$). In 3/4 of the sample the SF is extended on galaxy scales (25-75 kpc), while the rest contains smaller (5-15 kpc) SF patches in the vicinity of an ETG—presumably gas-rich satellites being disrupted. Optical imaging reveals that all ETGs with galaxy-scale SF in our sample have old stellar disks (mostly S0 type). None is classified as a true elliptical. In our sample, galaxy-scale SF takes the form of UV rings of varying sizes and morphologies. For the majority of such objects we conclude that the gas needed to fuel current SF has been accreted from the intergalactic medium, probably in a prolonged, quasi-static manner, leading in some cases to additional disk buildup. The remaining ETGs with galaxy-scale SF have UV and optical morphologies consistent with minor merger-driven SF or with the final stages of SF in fading spirals. Our analysis excludes that all recent SF on the red sequence resulted from gas-rich mergers. We find further evidence that galaxy-scale SF is almost exclusively an S0 phenomenon ($\sim$20% S0s have SF) by examining the overall optically red SDSS ETGs. Conclusion is that significant number of field S0s maintain or resume low-level SF because the preventive feedback is not in place or is intermittent. True ellipticals, on the other hand, stay entirely quiescent even in the field.Item Modeling the effects of star formation histories on H$\alpha$ and ultraviolet fluxes in nearby dwarf galaxies(The American Astronomical Society, 2012) Weisz, D.R.; Johnson, B.D.; Johnson, L.C.; Skillman, E.D.; Lee, J.C.; Kennicutt, R.C.; Calzetti, D.; Van Zee, L.; Bothwell, M.S.; Dalcanton, J.J.; Dale, D.A.; Williams, B.F.We consider the effects of non-constant star formation histories (SFHs) on $\text{H}\alpha$ and GALEX far-ultraviolet (FUV) star formation rate (SFR) indicators. Under the assumption of a fully populated Chabrier initial mass function (IMF), we compare the distribution of $\text{H}\alpha$-to-FUV flux ratios from ~1500 simple, periodic model SFHs with observations of 185 galaxies from the $\textit{Spitzer}$ Local Volume Legacy survey. We find a set of SFH models that are well matched to the data, such that more massive galaxies are best characterized by nearly constant SFHs, while low-mass systems experience burst amplitudes of ~30 (i.e., an increase in the SFR by a factor of 30 over the SFR during the inter-burst period), burst durations of tens of Myr, and periods of ~250 Myr; these SFHs are broadly consistent with the increased stochastic star formation expected in systems with lower SFRs. We analyze the predicted temporal evolution of galaxy stellar mass, R-band surface brightness, $\text{H}\alpha$-derived SFR, and blue luminosity, and find that they provide a reasonable match to observed flux distributions. We find that our model SFHs are generally able to reproduce both the observed systematic decline and increased scatter in $\text{H}\alpha$-to-FUV ratios toward low-mass systems, without invoking other physical mechanisms. We also compare our predictions with those from the Integrated Galactic IMF theory with a constant SFR. We find that while both predict a systematic decline in the observed ratios, only the time variable SFH models are capable of producing the observed population of low-mass galaxies $\big(M_{*} \lesssim 10^{7} M_{\odot}\big)$ with normal $\text{H}\alpha$-to-FUV ratios. These results demonstrate that a variable IMF alone has difficulty explaining the observed scatter in the $\text{H}\alpha$-to-FUV ratios. We conclude by considering the limitations of the model SFHs and discuss the use of additional empirical constraints to improve future SFH modeling efforts.Item The slow death (or rebirth?) of extended star formation in $z \sim 0.1$ green valley early-type galaxies(The American Astronomical Society, 2012) Fang, J.J.; Faber, S.M.; Salim, S.; Graves, G.J.; Rich, R.M.UV observations in the local universe have uncovered a population of early-type galaxies with UV flux consistent with low-level recent or ongoing star formation. Understanding the origin of such star formation remains an open issue. We present resolved UV-optical photometry of a sample of 19 Sloan Digital Sky Survey (SDSS) early-type galaxies at $z \sim 0.1$ drawn from the sample originally selected by Salim & Rich to lie in the bluer part of the green valley in the UV-optical color-magnitude diagram as measured by the $\textit{Galaxy Evolution Explorer (GALEX)}$. Utilizing high-resolution $\textit{Hubble Space Telescope (HST)}$ far-UV imaging provides unique insight into the distribution of UV light in these galaxies, which we call "extended star-forming early-type galaxies" (ESF-ETGs) because of extended UV emission that is indicative of recent star formation. The UV-optical color profiles of all ESF-ETGs show red centers and blue outer parts. Their outer colors require the existence of a significant underlying population of older stars in the UV-bright regions. An analysis of stacked SDSS spectra reveals weak LINER-like emission in their centers. Using a cross-matched SDSS DR7/$GALEX$ GR6 catalog, we search for other green valley galaxies with similar properties to these ESF-ETGs and estimate that $\approx 13%$ of dust-corrected green valley galaxies of similar stellar mass and UV-optical color are likely ESF-candidates, i.e., ESF-ETGs are not rare. Our results are consistent with star formation that is gradually declining in existing disks, i.e., the ESF-ETGs are evolving onto the red sequence for the first time, or with rejuvenated star formation due to accreted gas in older disks provided that the gas does not disrupt the structure of the galaxy and the resulting star formation is not too recent and bursty. ESF-ETGs may typify an important subpopulation of galaxies that can linger in the green valley for up to several Gyrs, based on their resemblance to nearby gas-rich green valley galaxies with low-level ongoing star formation.Item Star formation rate distributions: Inadequacy of the Schechter function(The American Astronomical Society, 2012) Salim, S.; Lee, J.C.In this paper, we posit that galaxy luminosity functions (LFs) come in two fundamentally different types depending on whether the luminosity traces galaxy stellar mass or its current star formation rate (SFR). $\textit{Mass function types}$ reflect the older stars and therefore the stellar mass distribution, while $\textit{SFR function types}$ arise from the young stars and hence the distribution of SFRs. Optical and near-infrared LFs are of the mass function type and are well fit by a Schechter function (power law with an exponential cutoff at the bright end). In contrast, LFs of the SFR function type are of a different form, one that cannot be adequately described by a Schechter function. We demonstrate this difference by generating SFR distributions for mock samples of galaxies drawn from a Schechter stellar mass distribution along with established empirical relations between the SFR and stellar mass. Compared with the Schechter function, SFR distributions have a shallower decline at the bright end, which can be traced to the large intrinsic scatter of SFRs at any given stellar mass. A superior description of SFR distributions is given by the "Saunders" function, which combines a power law with a Gaussian at the high end. We show that the Schechter-like appearance of UV and Hα LFs, although they are LFs of SFR function type, results when luminosities are not corrected for dust, or when average statistical corrections are used because individual attenuation measurements are not available. We thus infer that the non-Schechter form of the far-IR LFs is a true reflection of the underlying SFR distribution, rather than the purported artifact of active galactic nucleus contamination.