Browsing by Author "Schimmelmann, Arndt"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Comparison of Hydrocarbon Potentials of New Albany Shale And Maquoketa Group in Indiana, USA(Jacobs Publishing, 2015-12) Akar, Cagla; Drobniak, Agnieszka; Mastalerz, Maria; Schimmelmann, ArndtOrganic petrographic (maceral composition and vitrinite reflectance, Ro) and geochemical methods (Rock-Eval pyrolysis and total organic carbon, TOC) were used to compare hydrocarbon potentials of New Albany Shale (Middle Devonian to Lower Mississippian) and Maquoketa Group (Upper Ordovician) based on 51 samples from 5 drill cores from the Illinois Basin. New Albany Shale is an effective source rock due to its organic matter content and character (Type I and Type II kerogen) and its dominant placement in the oil window. The considerably higher thermal maturity of underlying strata has drawn attention to Maquoketa Shale as a possible source rock. Our results show that although Maquoketa Shale (Rock-Eval Tmax = 435 to 445 °C) is more mature than New Albany Shale (Tmax = 427 to 442 °C), the relatively higher organic matter content in New Albany Shale with up to 13.80 wt. % TOC supports a higher hydrocarbon potential than Maquoketa Shale’s TOC values between 0.09 to 1.32 wt. %. New Albany Shale’s notable differences between directly measured vitrinite reflectance values and calculated Ro values from Tmax are probably caused by suppression of vitrinite reflectance. Correction for suppression of Ro values would place New Albany Shale more favorably into the oil window.Item Compound Specific Carbon and Hydrogen Stable Isotope Ratios of Coalbed Gases in Southeastern Illinois Basin(2007-01-12) Strapoc, Dariusz; Schimmelmann, Arndt; Mastalerz, Maria; Eble, CortlandCoalbed gases and waters from exploratory and production gas wells in the southeastern Illinois Basin were sampled to geochemically assess the origin of coalbed gases, with emphasis on Springfield and Seelyville coal members that are commercially targeted for coalbed methane production. On-line analyses of hydrocarbon gases (methane to butanes: C1, C2, C3, n-C4, i-C4) and CO2 yielded chemical concentrations, Delta-D, and Delta 13C values. The low thermal maturity of Indiana coals (vitrinite reflectance Ro ~ 0.6%) is in agreement with an overwhelmingly biogenic isotopic signature of coalbed gas that has greater than or equal to 96% methane generated via bacterial CO2-reduction. In contrast, thermogenic coalbed gas was generated by the stratigraphically equivalent coalbeds in western Kentucky’s Rough Creek Graben zone where higher maturities of up to Ro ~ 0.8% are reached due to tectonic and hydrothermal activity. No secondary biogenic methane was observed in Kentucky coalbed gases, probably due to greater burial depths and limited recharge of meteoric water. The two differently sourced types of coalbed gases are compositionally and isotopically distinct. Microbial biodegradation of thermogenic C2+ hydrocarbon gases in Indiana coalbeds preferentially targets C3 and introduces isotope fractionation whereby remaining C3 is enriched in heavy hydrogen and carbon isotopes.Item Compound Specific Carbon and Hydrogen Stable Isotope Ratios of Coalbed Gases in Southeastern Illinois Basin(2007-01-12) Strapoc, Dariusz; Schimmelmann, Arndt; Mastalerz, Maria; Eble, CorlandCoalbed gases and waters from exploratory and production gas wells in the southeastern Illinois Basin were sampled to geochemically assess the origin of coalbed gases, with emphasis on Springfield and Seelyville coal members that are commercially targeted for coalbed methane production. On-line analyses of hydrocarbon gases (methane to butanes: C1, C2, C3, n-C4, i-C4) and CO2 yielded chemical concentrations, Delta-D, and Delta 13C values. The low thermal maturity of Indiana coals (vitrinite reflectance Ro ~ 0.6%) is in agreement with an overwhelmingly biogenic isotopic signature of coalbed gas that has greater than or equal to 96% methane generated via bacterial CO2-reduction. In contrast, thermogenic coalbed gas was generated by the stratigraphically equivalent coalbeds in western Kentucky’s Rough Creek Graben zone where higher maturities of up to Ro ~ 0.8% are reached due to tectonic and hydrothermal activity. No secondary biogenic methane was observed in Kentucky coalbed gases, probably due to greater burial depths and limited recharge of meteoric water. The two differently sourced types of coalbed gases are compositionally and isotopically distinct. Microbial biodegradation of thermogenic C2+ hydrocarbon gases in Indiana coalbeds preferentially targets C3 and introduces isotope fractionation whereby remaining C3 is enriched in heavy hydrogen and carbon isotopes.Item Contact Metamorphism of Bituminous Coal by Intruding Dike in the Illinois Basin Causes Short-Range Thermal Alteration(2007-08) Drobniak, Agnieszka; Mastalerz, Maria; Schimmelmann, Arndt; Sauer, PeterChanges in high-volatile bituminous coal (Pennsylvanian) near contacts with volcanic intrusions in Illinois were investigated with respect to coal chemistry, carbon and hydrogen stable isotope ratios, and pore structure. Vitrinite reflectance (Ro) increases from ~0.6% to ~5% within 4.7 m from the dike. Elemental chemistry of the coal shows distinct reduction in hydrogen and nitrogen content approaching the intrusions. No trend was noticed for total sulfur content, but decreases in sulfate and organic sulfur contents towards the dikes indicate thermal sulfur reduction (TSR). Carbon isotopic values did not show significant changes, whereas hydrogen isotopic values showed a distinct trend of becoming more negative toward the dikes. Contact metamorphism has a dramatic effect on coal porosity. The mesopore volume decreases 3 3 from 0.01 cm /g in the unaffected coal to 0.004 cm /g at a distance 3 of 4.5 m away from the contact, then hovers around 0.004 cm /g closer to the contact. In contrast, the micropore volume shows a 3 progressive decrease from 0.04 cm /g in unaffected coal to almost 3 0.01 cm /g at the contact. Strongly decreasing mesopore and micropore volumes in the altered zone, together with frequent cleat and fracture-filling by calcite, indicate deteriorating conditions for both coalbed gas sorption and gas transmissibility.Item Controls on coalbed methane potential and gas sorption characteristics of high volatile bituminous coals in Indiana([Bloomington, Ind.] : Indiana University, 2010-06-01) Solano-Acosta, Wilfrido; Schimmelmann, Arndt; Mastalerz, MariaThe increasing demand for energy and a growing concern for global warming, owing in part to the steep rise in anthropogenic greenhouse gas emissions, have sparked worldwide interest in clean coal technologies. Although the energy potential of coal is large, there are many environmental concerns associated with its large-scale utilization. An alternative solution to increasing demand for energy is the recovery of coalbed methane (CBM), an efficient and clean fossil fuel associated with extensive coal deposits. CBM today represents nearly 10 percent of the energy consumed in the United States. From an environmental perspective, coal beds that are too deep or that contain low-quality coal are being investigated as potential sites for permanently sequestering carbon dioxide emissions (CO2 sequestration). Methane has been documented in coals of various ranks. The occurrence and distribution of economically recoverable quantities of CBM result from the interplay between stratigraphy, tectonics, and hydrology. This study evaluates geologic factors that control the occurrence of CBM in Indiana coals, ranging from large-scale processes (i.e., burial and fracturing) to molecular interactions between CBM and the physical structure of coal (i.e., gas adsorption). This study investigates the role of tectonics and burial in the formation of coal fracture sets (cleats) that are critical for CBM extraction. Based on field data, I investigate the role of fracturing with regard to gas occurrence and CBM producibility. The timing of cleat formation is evaluated via carbon and oxygen isotopic signatures of cleat-filling minerals. In addition to field-scale observations, this study includes an experimental component that, based on a multitude of laboratory data, constrains optimum conditions for coal-sample preservation prior to laboratory analyses for exploration. Chemical analyses, petrography, grain-size distributions, Fourier transform infra-red (FTIR) spectroscopy, pore distribution, and adsorption experiments at high and low gas pressures are employed to estimate reservoir gas capacity and to characterize high volatile bituminous coals of Indiana for potential future CO2 sequestration. Understanding the mechanisms and geologic conditions that control the occurrence of gas in coal allows us to better characterize: (1) CBM reservoirs for their potential economic use, and (2) coal seams as future receptacles of anthropogenic carbon dioxide.Item High resolution study of pyrite framboid distribution in varved Santa Barbara Basin sediments and implications for water-column oxygenation(2007-05) Schieber, Juergen; Schimmelmann, ArndtMonitoring of the concentration of dissolved elemental oxygen (i.e., ‘oxygenation’) of sub-sill waters in the Santa Barbara Basin (SBB) over the last few decades has consistently demonstrated sub-oxic bottom water conditions. However, anoxic conditions and hydrogen sulfide (H2S) are present below a few millimeters depth in the sedimentary column. The absence of euxinic conditions (i.e., anoxic-sulfidic: no free O2 but free H2S) in any part of the modern SBB water column makes this basin geochemically distinct from the Black Sea and other more oxygen-depleted basins. The varved sediment record from the central SBB has been used extensively for high-resolution paleoceanographic reconstructions. The SBB and other oxygen-depleted basins are considered modern analogs for black shales. Geochemical proxies for paleo-redox conditions in black shales need to be tested against modern, well-constrained depositional systems like the SBB. Pyrite framboids are a common component in many anoxic marine sediments and are deemed to carry paleoceanographic information. Observations from modern Black Sea sediment yielded the hypotheses that (i) abundant small framboids below 5 m diameter indicate euxinic (anoxic-sulfidic) bottom waters, and (ii) mean framboid sizes above 5m indicate suboxic or normally oxygenated bottom waters. We are using Scanning Electron Microscopy to compile a detailed inventory of framboid occurrence in AD 1983-2004 SBB varves and compare framboid size distribution against the known history of SBB water column oxygenation. Our ground-truthing effort has shown that framboids in modern SBB sediment dominantly are in the 2-4 m range and thus show closely similar size distributions to those measured in Black Sea sediments underlying an euxinic water column. Of course, the lower SBB water column is suboxic, and therefore we conclude that the framboid size distribution in modern sediment and in black shales has no diagnostic value for paleo-water column oxygenation. Our data further indicate significant variability in mean framboid size between successive varves that do not correlate with historic changes in SBB water oxygenation. We are evaluating other potential factors that could affect framboid size, for example (i) the availability of iron from clastic terrestrial input from the continent, (ii) the availability of freshly deposited organic matter nourishing the microbial community and influencing the redox profile near the sediment/water interface, and (iii) the depth of burial within the near-surface sediment that fosters the precipitation of framboids. The generally lower abundance of framboids in the youngest, uppermost varves suggests that it takes several years of mineralization before framboid formation goes to completion in a given sediment layer. After about 5 years framboid abundance appears to stabilize, providing further support to the view that framboids do not form in the water column and should not be considered recorders of water column oxygenation.Item Improved On-line Measurement of Bone Collagen D/H as Forensic Environmental Indicator(Isoscapes 2008 Conference, 2008-04-07) Topalov, Katarina; Schimmelmann, Arndt; Polly, David; Sauer, Peter E.The organic hydrogen isotope ratio (deuterium/hydrogen or D/H) in the tissues of terrestrial organisms is related to D/H values of precursor hydrogen in diet and water from precipitation. D/H in (fossil) bone collagen potentially characterizes the (paleo)environment of an animal. However, the original (paleo)environmental isotopic signal of organic hydrogen is largely limited to carbon-linked hydrogen (C-H). In contrast, organic hydrogen that is chemically linked to other elements (e.g., oxygen O-H and nitrogen N-H) is more loosely bound and exchanges with ambient water, even during storage and sample preparation. Further, the fraction of exchangeable hydrogen in total hydrogen can vary among samples. The uncertainty from exchangeable hydrogen can be reduced via equilibration with isotopically known water vapors and subsequent mass-balance calculations arriving at the D/H of non-exchangeable hydrogen in collagen. Labor-intensive methods for isotopic equilibration of exchangeable organic hydrogen with water vapor have been used for more than 15 years. Here we present data from steam-equilibrated samples using a more efficient continuous-flow (i.e., on-line) approach using a ThermoFinnigan TC/EA fitted with an autosampler. Collagens from bones of modern White tail deer (Odocoileus virginianus) and Southern mule deer (O. hemionus) across climate gradients in the USA were prepared for our preliminary study. Traditionally, TC/EA samples are wrapped tightly in non-permeable silver capsules that limit the access of steam to collagen. Our samples were loaded into individual micro-perforated silver TC/EA cups. Cups were crimped shut and looked like small shopping bags. The perforations at the bottom of each cup were small enough that collagen could not spill out of the cup, but steam and gas could freely pass into and out of the cups. Steam equilibration of an entire carousel (up to 49 cups) in an equilibration chamber occurred overnight with isotopically known steam at 115ºC, followed by drying with dry nitrogen, cooling, rapid transfer of the carousel to the TC/EA, and determination of D/H. We present preliminary results from collagens and discuss advantages of the new method.