IUScholarWorksIndiana University Libraries
Communities & Collections
All of IUScholarWorks
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
External Users Only:
New external user? Click here to register. Have you forgotten your external user password?
  1. Home
  2. Browse by Author

Browsing by Author "Reilly, J. P."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Top-Down/Bottom-Up Study of the Ribosomal Proteins of Caulobacter crescentus
    (Journal of Proteome Research, 2007) Running, W. E.; Ravipaty, S.; Karty, Jonathan; Reilly, J. P.
    Ribosomes from the Gram-negative α-proteobacterium Caulobacter crescentus were isolated using standard methods. Proteins were separated using a two-dimensional liquid chromatographic system that allowed the analysis of whole proteins by direct coupling to an ESI-QTOF mass spectrometer and of proteolytic digests by a number of mass spectrometric methods. The masses of 53 of 54 ribosomal proteins were directly measured. Protein identifications and proposed post-translational modifications were supported by proteolysis with trypsin, endoprotease Glu-C, and exoproteases carboxypeptidases Y and P. Tryptic peptide mass maps show an average sequence coverage of 62%, and carboxypeptidase C-terminal sequence tagging provided unambiguous identification of the small, highly basic proteins of the large subunit. C. crescentus presents some post-translational modifications that are similar to those of Escherichia coli (e.g., N-terminal acetylation of S9 and S18) along with some unique variations, such as a near absence of L7 and extensive modification of L11. The comprehensive description of this organism's ribosomal proteome provides a foundation for the study of ribosome structure, dependence of post-translational modifications on growth conditions, and the evolution of subcellular organelles.
  • Accessibility
  • Privacy Notice
  • Harmful Language Statement
  • Copyright © 2024 The Trustees of Indiana University