Browsing by Author "Pavey, Richard R."
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item The Bellevue Flood of 2008(2008-01-13) Pavey, Richard R.Item GIS Tools for 3-D Surficial Mapping in Ohio(U.S. Geological Survey, 2008) McDonald, James; Pavey, Richard R.; Venteris, Erik R.; Wells, Joseph G.The Ohio Department of Natural Resources, Division of Geological Survey is currently mapping the surficial geology of Ohio in three dimensions (3-D) using a modified version of the stack-mapping technique of Kempton (1981). The stack-mapping technique depicts the geology for an area in 3-D by listing the unconsolidated (mostly glacial) geologic units from the surface to bedrock, the thickness of each unit, and the underlying bedrock unit. The new mapping of the surficial geology is intended to replace the older and smaller-scale mapping that was based upon generalized, two-dimensional mapping techniques. Three ArcMap-based software applications were developed to assist with the stack-unit mapping program. The first software application used the lithologies from water wells to create on-screen graphics representing the stratigraphic columns for each well record. These stratigraphic columns are interpreted by the geologist to assign a generalized stack unit for each polygon. The second software application consists of two tools used to attribute and label the stack-map polygons, which will capture the information in the GIS and for cartographic display. The first tool attributes a one-to-many relationship between a surficial-geology polygon and the lithology table. The second tool labels the surficial-geology polygons with the stack text for use in map publishing. The third application performs custom queries against the lithology table that can be used to create derivative mapping products, such as location and thickness of sand and gravel resources. These three applications allow the efficient creation of 3-D surficial-geology polygons and labels within a GIS database, and provide analysis tool to facilitate the use of the 3-D surficial geology maps for specific applications.Item GIS-based Three-dimensional Geologic and Hydrogeologic Modeling of the Milan, Ohio 1:24,000 Quadrangle(2008) Pavey, Richard R.; Olyphant, Greg A.; Letsinger, Sally L.The Central Great Lakes Geologic Mapping Coalition (CGLGMC) is a partnership among the state geological surveys of Ohio, Indiana, Illinois, and Michigan, and the U.S. Geological Survey. The mission of the CGLGMC is to produce detailed three-dimensional geologic maps and information, along with related digital databases, that support informed decision-making involving ground water, mineral-resource availability and distribution, geological hazards, and environmental management. The initial Ohio project for the CGLGMC was the geologic and ground-water modeling of the Milan Quadrangle in north-central Ohio. This area was modeled as ten lithologic units, including alluvium, beach ridges, lacustrine sand and clayey silt units, Wisconsinan till, and a significant pre-Wisconsinan buried valley aquifer. Tools in ESRI ArcGIS, including the Spatial Analyst extension, were used to analyze borehole and outcrop data, construct the bounding surfaces of each lithologic unit, and to produce raster data layers representing the three-dimensional framework of these units. We used the detailed three-dimensional geologic model and merged it with an equally detailed groundwater-flow model to produce a more realistic understanding of the controls that glacial geology and geomorphology exert on shallow ground-water flow systems. The top of the geologic model was the surface topography (digital elevation model), which was also used to derive the drainage network that is an important boundary condition in the ground-water flow model. The bottom of the geologic model was the top surface of the Devonian Ohio Shale. Flow in the shallow saturated zone reflected strong control by surface topography and assumed hydraulic properties of the mapped sedimentary units. In contrast, the flow at depth was not strongly influenced by the topography of the Ohio Shale but did show some tendency for regional flow toward Lake Erie. The resultant three-dimensional geologic model and companion ground-water modeling results can be used to produce a range of derivative products such as maps of recharge and discharge areas. Such products can be used to address the wide variety of water management, land use, environmental, and resource issues that are crucial to local, state, and federal agencies, private industry, and the general public.Item Karst Flooding in Bellevue, Ohio, and Vicinity - 2008(ODNR Division of Geological Survey, 2012-07-12) Swinford, E. Mac; Powers, Donovan M.; Angle, Michael P.; Pavey, Richard R.On March 18, 2008, ground water levels rose to a 30-year high in the Bellevue, Ohio, area. Surface and near-surface geologic conditions combined with unusually high precipitation caused extensive flooding of fields, roadways, and residences. Existing basins and sinkholes, caverns, and underground drainage (collectively called karst) exacerbated the flooding and the area drained slowly over the course of months. Map EG-5 describes the flood area and background geology, including karst features and terrains; reviews the nature of the flooding; and provides map documentation of the flooded area for future land-use planning by citizens and government.Item Karst of the Western Delaware County, Ohio, Region - Mapbook(Ohio Department of Natural Resources, Division of Geological Survey, 2011) Aden, Douglas J.; Powers, Donovan M.; Pavey, Richard R.; Jones, D. Mark; Martin, Dean R.; Shrake, Douglas L.; Angle, Michael P.To locate sinks, LiDAR was used to create an ArcGIS layer that identified low, enclosed areas. These low spots were cross referenced with known karst points, bedrock geology, aerial photography (multiple sources/ages), soil maps, drift thickness, and water well logs to locate potential sinks. Suspect locations then were visited in the field, evaluated, and photographed. Through this process we quickly learned that many of the LiDAR returns were not sinks; features such as building foundations, broken field tile, steep-walled streams, and road culverts often produced enclosed areas similar in shape to sinkholes. Many of these features were eliminated using 6-inches-per pixel aerial photography and experience from field verification. The resulting map of sinkholes and collection of photographs can be used to monitor the growth of preexisting sinkholes and the development of new karst features. Furthermore, areas of land development should be carefully planned in regions of dense karst since they are highly susceptible to pollution and may subside.Item Karst of Western Delaware County, Ohio, Region(Ohio Department of Natural Resources, Division of Geological Survey, 2011) Aden, Douglas J.; Powers, Donovan M.; Pavey, Richard R.; Jones, D. Mark; Martin, Dean R.; Angle, Michael P.Karst terrain forms by dissolution of carbonate rocks (limestone or dolomite) and occasionally evaporates (gypsum or salt) and is characterized by features such as sinkholes (or sinks), disappearing streams, caves, and springs. The many passageways formed in karst terrain allow for high connectivity between the land surface and the water table and can bypass soil and rock layers that filter out contaminants. When materials such as fertilizer, pesticide, and waste enter sinkholes, they are rapidly transported to the water table and quickly pollute water wells, streams, and rivers. Karst also poses infrastructure complications: roads, utilities, houses, and other facilities built in karst areas are at risk of subsidence or collapse. In order to test a process for determining areas at risk from karst in Ohio, an area encompassing Western Delaware and bordering counties was selected. Rapidly developing and known to contain karst, Delaware County is close to the Ohio Geological Survey’s main office, so field verification could be easily accomplished while sink-locating methods were refined. To locate sinks, LiDAR was used to create an ArcGIS layer that identified low, enclosed areas. These low spots were cross referenced with known karst points, bedrock geology, aerial photography (multiple sources/ages), soil maps, drift thickness, and water well logs to locate potential sinks. Suspect locations then were visited in the field, evaluated, and photographed. Through this process we quickly learned that many of the LiDAR returns were not sinks; features such as building foundations, broken field tile, steep-walled streams, and road culverts often produced enclosed areas similar in shape to sinkholes. Many of these features were eliminated using 6-inches-per pixel aerial photography and experience from field verification. The resulting map of sinkholes and collection of photographs can be used to monitor the growth of preexisting sinkholes and the development of new karst features. Furthermore, areas of land development should be carefully planned in regions of dense karst since they are highly susceptible to pollution and may subside.Item Potential for Mineable Bedrock in the Findlay 30 x 60 minute quadrangle(Ohio Department of Natural Resources; Division of Geological Survey, 2011-02) Venteris, Erik R.; Shrake, Douglas L.; Larsen, Glenn E.; Angle, Michael P.; Pavey, Richard R.; Wolfe, Mark E.The Ohio Department of Natural Resources (ODNR), Division of Geological Survey has completed a reconnaissance map showing areas of mineable bedrock, including shale, limestone, and dolomite, likely covered by thin surficial materials (glacial drift) in the Findlay, Ohio, 30 x 50-minute (1:1,100,000-scale) quadrangle. The main purpose of this map was to create a reconnaissance-level map that shows the potential for mining carbonate and shale bedrock in this quadrangle. We sought to create this map from as many existing ODNR Division of Geological Survey maps and GIS datasets as possible. The map shows areas of surficial materials in increments of 10 ft and totaling less than 40 ft overlying Silurian- and Devonian-age dolomite and limestone, and it also shows a limited area in the southeastern most portion of the quadrangle where surficial materials (totaling less than 20 ft) overlay potential Devonian-age shale resources.Item Potential for Mineable Bedrock in the Marion 30 X 60 minute quadrangle(Ohio Department of Natural Resources, Division of Geological Survey, 2011-02) Shrake, Douglas L.; Venteris, Erik R.; Larsen, Glenn E.; Angle, Michael P.; Pavey, Richard R.; Wolfe, Mark E.; Powers, Donovan M.The Ohio Department of Natural Resources (ODNR), Division of Geological Survey has completed a reconnaissance map showing areas of mineable bedrock, including shale, limestone, and dolomite, likely covered by thin surficial materials (glacial drift) in the Marion, Ohio, 30 x 50-minute (1:1,100,000-scale) quadrangle. The main purpose of this map was to create a reconnaissance-level map that shows the potential for mining carbonate and shale bedrock in this quadrangle. We sought to create this map from as many existing ODNR Division of Geological Survey maps and GIS datasets as possible. The map shows areas of surficial materials in increments of 10 ft and totaling less than 40 ft overlying Silurian- and Devonian-age dolomite and limestone, and it also shows a limited area in the easternmost portion of the quadrangle where surficial materials (totaling less than 20 ft) overlay potential Devonian-age shale resources.Item Potential Sand and Gravel Resources of the Canton 30 x 60-Minute Quadrangle, Ohio(Ohio Department of Natural Resources, 2011-08) Pavey, Richard R.; Aden, Douglas J.; Larsen, Glenn E.; Angle, Michael P.; Wolfe, Mark E.The Ohio Department of Natural Resources (ODNR), Division of Geological Survey has completed a reconnaissance map showing areas of mineable sand and gravel resources in the Canton, Ohio, 30 x 60-minute 1:100,000-scale quadrangle. The main purpose of this map was to create a reconnaissance-level map that would show the potential for mining sand-and-gravel in this quadrangle. The map shows areas of surficial materials in increments of 10 feet and then differentiates sand, sand and gravel, and ice-contact deposits from finer grained materials, such as glacial till, lacustrine clay and silt, and alluvial materials. The sand and sand-and-gravel units include both surficial and buried outwash and valley train deposits and ice-contact deposits, such as kames, kame terraces, and eskers. This map was created to show the total thickness or accumulation of sand and gravel in the Canton 30 x 60-minute quadrangle. The thickness of sand-and-gravel deposits helps determine if it is economically viable.Item Potential Sand and Gravel Resources of the Mansfield 30 x 60 minute quadrangle(Ohio Department of Natural Resources; Division of Geological Survey, 2011-03) Venteris, Eric R.; Shrake, Douglas L.; Larsen, Glenn E.; Pavey, Richard R.; Schumacher, Gregory A.The Ohio Department of Natural Resources (ODNR), Division of Geological Survey has completed a reconnaissance map showing areas of mineable sand and gravel resources in the Mansfield, Ohio, 30 x 60 minute (scale 1:100,000) quadrangle. The main purpose of this map was to create a reconnaissance-level map that would show the potential for mining sand and gravel in this quadrangle. The map shows areas of surficial materials in increments of 10 feet and then differentiates sand, sand and gravel, and ice-contact deposits from finer grained materials, such as glacial till, lacustrine clay and silt, and alluvial materials. The sand and sand-and-gravel units include both surficial and buried outwash and valley train deposits and ice-contact deposits, such as kames, kame terraces, and eskers. To determine if a sand-and-gravel deposit was economically viable, this map shows the total thickness or accumulation of sand and gravel in the Mansfield 30 x 60-minute quadrangle.Item Suitablility for Solid-Waste Disposal in the Lorain 30 x 60-Minute Quadrangle(Ohio Department of Natural Resources, 2011-09) Pavey, Richard R.; Larsen, Glenn E.; Angle, Michael P.; Aden, Douglas J.; Jones, D. MarkThe Ohio Department of Natural Resources (ODNR), Division of Geological Survey has completed a reconnaissance map showing areas suitable for solid waste disposal in the Lorain, Ohio, 30 x 50-minute (1:1,100,000-scale) quadrangle. The main purpose of this map is to provide a reconnaissance level map that shows the relative suitability of various surficial materials for the disposal or containment of solid waste in this quadrangle. Our goal was to create this map from existing ODNR Division of Geological Survey maps and GIS datasets as much as possible. Consequently, the Lorain map is a derivative map based directly from the ODNR Division of Geological Survey SG-2 Series map, Surficial Geology of the Lorain and Put-in-Bay 30 x 60 Minute Quadrangles (Pavey and others, 2005). The SG-2 series features maps based upon polygons that represent a “stack” of mapped unit lithologies and thicknesses. These maps show surficial materials in increments of 10 feet within each polygon across the study area. A set of queries were run in ESRI ArcGIS to determine the range of thickness and nature of the sediments. The main premise of this map is to specify areas of thick, fine-grained glacial till and glaciolacustrine silt and clay deposits for solid-waste disposal and containment. A minimum of 30 feet of fine-grained material was deemed necessary for waste disposal for areas where the drift overlies shale; siltstone; or interbedded, shaley limestone. If the fine-grained material was directly overlying an aquifer, the minimum required thickness was increased to 50 feet. Aquifers included sand and gravel, sandstone, limestone, and dolomite. Areas with over 20 feet of sand and gravel or sand at the surface (e.g., kames, beach ridges) were excluded as were areas with alluvium (active streams) and organic deposits at the land surface. The main factor in the decision-making process was to have adequate fine-grained materials overlying the aquifers.