IUScholarWorksIndiana University Libraries
Communities & Collections
All of IUScholarWorks
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
External Users Only:
New external user? Click here to register. Have you forgotten your external user password?
  1. Home
  2. Browse by Author

Browsing by Author "Li, Junjie"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Explore True Performance Using Application Benchmark for the Next Generation HPC Systems: First NSF EAGER SPEC HPG Workshop Report
    (2019-09-12) Henschel, Robert; Li, Junjie; Eigenmann, Rudolf; Chandrasekaran, Sunita
  • Loading...
    Thumbnail Image
    Item
    Performance Characteristics of Virtualized GPUs for Deep Learning
    (2019-10) Michael, Scott; Teige, Scott; Li, Junjie; Lowe, John Michael; Turner, George; Henschel, Robert
    As deep learning techniques and algorithms become more and more common in scientific workflows, HPC centers are grappling with how best to provide GPU resources and support deep learning workloads. One novel method of deployment is to virtualize GPU resources allowing for multiple VM instances to have logically distinct virtual GPUs (vGPUs) on a shared physical GPU. However, there are many operational and performance implications to consider before deploying a vGPU service in an HPC center. In this paper, we investigate the performance characteristics of vGPUs for both traditional HPC workloads and for deep learning training and inference workloads. Using NVIDIA’s vDWS virtualization software, we perform a series of HPC and deep learning benchmarks on both non-virtualized (bare metal) and vGPUs of various sizes and configurations. We report on several of the challenges we discovered in deploying and operating a variety of virtualized instance sizes and configurations. We find that the overhead of virtualization on HPC workloads is generally < 10%, and can vary considerably for deep learning, depending on the task.
  • Accessibility
  • Privacy Notice
  • Harmful Language Statement
  • Copyright © 2024 The Trustees of Indiana University